Шредингер Э.

Что такое жизнь? С точки зрения физика.

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/1.html" 
Предисловие к русскому изданию. 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/2.html" 
Предисловие 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/3.html"  I.
Подход классического физика к предмету 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/4.html"  II.
Механизм наследственности 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/5.html"  III.
Мутации 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/6.html"  IV.
Данные квантовой механики 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/7.html"  V.
Обсуждение и проверка модели Дельбрюка 

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/8.html"  VI.
Упорядоченность, неупорядоченность и энтропия .

  HYPERLINK "http://www.philsci.univ.kiev.ua/biblio/Shred/9.html"  VII.
Основана ли жизнь на законах физики? 

Шредингер Э. Что такое жизнь? С точки зрения физика. - М., 1972.

Предисловие к русскому изданию.

Со времени написания Шредингером этой книги прошло почти 30 лет. За это
время книга за рубежом выдержала пять изданий, последнее из них в 1955
году. Все они были стереотипными, без каких-либо добавлений или
изменений.

Годы, прошедшие со времени лекций, прочитанных Шредингером в феврале
1943 г., были годами бурного развития науки в том направлении, которое
анализировал Шредингер. На этом пути достигнуты огромные успехи. Многие
теоретические предпосылки Шредингера блестяще подтверждены
экспериментом, некоторые положения кажутся сегодня устаревшими или
неверными. Мы не сочли возможным обсуждать все такие положения, так как
для этого пришлось бы написать книгу, в лучшем случае равную по объему
книге Шредингера. В последние годы вышло немало монографий, в которых на
высоком научном уровне и достаточно доступно изложены современные
представления о физико-химических основах жизни. К ним мы и отсылаем
любознательных читателей. Там, где возможно, мы сделали примечания,
необходимые с точки зрения современного уровня науки. Однако число и
объем таких замечаний мы стремились свести к минимуму, так как чтение
подстрочных примечаний в какой-то мере отвлекает читателя от основного
текста, нарушая процесс слежения за мыслью автора.

Несмотря на то, что большинство теоретических предположений Шредингера
воплощено в жизнь и наука пошла дальше, представляется целесообразным
переиздание его книги. Стремясь объяснить это, мы и написали настоящее
предисловие.

На рубеже XIX — XX вв. биология сделала поворот от широких умозрительных
построений к практике строгого

5

эксперимента. До этого в основе всех биологических наук лежали
преимущественно описания явлений и натурфилософия, ставившая во главу
угла абстрактные теоретические построения, основанные на многовековых
догмах. Если физика начала освобождаться от взглядов Аристотеля и
превращаться в точную экспериментальную науку в XVII—XVIII вв., то в
биологии отход от натурфилософских традиций затянулся до начала XX в.,
хотя основной удар по ним был нанесен в XIX в. замечательной работой
Дарвина. Благодаря усилиям таких выдающихся ученых, как Вирхов, Мендель,
Пастер, Мечников, Морган, было создано и достигло высокого уровня
развития экспериментальное направление в биологии. На этом пути биология
добилась больших успехов. Биологи твердо уяснили, что основой развития
науки являются факты. Основоположник экспериментального направления в
физиологии высшей нервной деятельности И. П. Павлов писал: “Факты —
воздух ученого”. Однако далее он отмечал, что собирание и накопление
фактов еще не является настоящей наукой. Голый эмпиризм без обобщающих
теорий слеп. Собственно, само экспериментальное направление в биологии,
в отличие от предыдущего чисто описательного, подразумевает не только
сбор фактов, но и целеустремленную постановку вопросов.
Биолог-экспериментатор планирует эксперимент. Он помещает живой объект в
строго подобранные условия, чтобы на основе анализа поведения этого
объекта в данных условиях судить о внутренней структуре данного объекта
и особенностях его функционирования. Поэтому лучшие представители
экспериментального направления в биологии не ограничивались сбором
фактов, а на их основе создавали теории. Наиболее выдающейся из таких
теорий, безусловно, является теория эволюции, созданная великим Дарвином
в результате анализа огромного фактического материала. Из своих,
казалось бы ограниченных данных, полученных в экспериментах по
скрещиванию различных сортов садового гороха, Мендель сформулировал
основные положения теории наследственности.

Но все же главное направление развития биологии в первой половине XX в.
было чисто экспериментальным. Это привело к тому, что, накопив к
настоящему времени громадное количество разрозненных экспериментальных
данных, биология стала остро нуждаться в обобщающих теориях.
Стремительно нарастает поток научных публикаций. Он захлестывает не
только отдельных ученых, но и

6

специально созданные большие “корабли” — институты научной информации.
Факты, факты и факты. Память современных электронных вычислительных
машин загружается ими. Ощущается не только несовершенство службы
информации, но и отсутствие больших обобщающих теорий, способных
объединить и сгруппировать эти разрозненные факты, указать перспективы
дальнейших исследований. Биологии остро нужны общие теории, для того
чтобы обобщить множество наблюдений, чтобы направленно задавать природе
новые вопросы о сущности ее явлений.

Спрос порождает предложение. Мы являемся свидетелями зарождения
теоретической биологии. В 1965 г. вышла в свет книга “Теоретическая и
математическая биология” *, в основе которой лежит курс лекций по
важнейшим вопросам современной теоретической биологии, читавшийся в
Йельском университете крупнейшими учеными (Н. Рашевским, Г. Кастлером,
Дж. Берналом, Дж. Бекеши и др.). Учитывая важность развития
теоретической биологии, Международный союз биологических наук
организовал три симпозиума по теоретической биологии. Материалы первого
из них недавно изданы у нас **. “На пути к теоретической биологии” — так
называется эта книга. Название ее очень удачно. Действительно,
современная наука находится на пути к теоретической биологии, и в этой
области сделаны лишь первые робкие шаги. Работу Шредингера “Что такое
жизнь?” можно считать одной из первых. Отличительной особенностью книги
является попытка привлечь для понимания биологических закономерностей
положения физики и химии. Одним из самых основных свойств живого
являются свойства наследственности и изменчивости. Естественно, что
Шредингер основное внимание уделяет физико-химическому объяснению этих
свойств. Генетика — вообще наиболее “точная” из биологических наук.
Знаменательно, что уже первая работа Менделя (опыты над растительными
гибридами), положившая начало научной генетике, построена на принципах
абстрагирования и обобщения. Не удивительно, что генетика с давних пор
привлекает внимание математиков, физиков и химиков. Уже сам принцип
дискретности, прерывистости наследственности, лежащий в основе теории
гена, очень созвучен атомарной теории строения вещества.

_____________________

* Теоретическая и математическая биология. М., “Мир”, 1968.

** На пути к теоретической биологии. Часть I. M., “Мир”, 1970.

7

Следует отметить, что первые попытки привлечь данные физики и химии для
объяснения ряда явлений наследственности были сделаны советским ученым
Н. К. Кольцовым. Еще в 1927 г. на первом торжественном заседании III
Всесоюзного съезда зоологов, анатомов и гистологов в Ленинграде Н. К.
Кольцов произнес речь о физико-химических основах морфологии. Эта речь
была напечатана на немецком языке в Biologisches Zentralblatt в 1928 г.
и на русском языке в “Новейших течениях научной мысли” в 1929 г. В 1935
г. он развил и углубил положение о физико-химических основах строения
наследственных структур в докладе на годичном заседании Московского
общества испытателей природы. Доклад Н. К. Кольцова имел символическое
для наших дней название: “Наследственные молекулы”. В этих работах
выдающийся советский ученый сформулировал положение о хромосоме как
гигантской молекуле, гениально предвосхитив открытия последних лет.

Наиболее характерной чертой развития биологии в течение почти 30 лет,
отделяющих нас от первого издания книги Шредингера, является
проникновение в биологию новых методов исследований и теоретических
концепций из различных разделов физики и химии. Этим новым
физико-химическим методам и теоретическим представлениям обязана
биология большинством своих замечательных открытий последних лет.
Принципы физики и химии являются фундаментом многих важнейших дисциплин
современной биологии, что нашло свое отражение даже в названиях
последних (“биохимия”, “биофизика”, “молекулярная биология” и т. д.). В
настоящее время становится все более ясно, что без создания
теоретической биологии и без анализа физико-химических основ
биологических процессов невозможно дальнейшее развитие биологии. Во
многих странах, в том числе и в Советском Союзе, созданы институты
биофизики, биохимии, молекулярной биологии, издаются соответствующие
журналы, выпускаются монографии, посвященные физико-химическим основам
жизни. Курсы биохимии, биофизики и молекулярной биологии читаются во
многих вузах. Если теоретическая биология лишь зарождается, то
физико-химическое направление в биологии добилось уже немалых успехов.
Одним из блестящих достижений на этом пути явилось установление природы
наследственного вещества — дезоксирибонуклеиновой кислоты (ДНК) и
определение структуры последней. Захватывающими дух представляются
работы по расшифровке

8

кода наследственности, которые открывают дорогу к познанию сокровенных
тайн живого и попыткам направленного изменения наследственности. Совсем
недавно группе ученых удалось выделить функционирующую цепочку из трех
генов. Биология, вооруженная физикой и химией, способна творить чудеса!

Книга Шредингера “Что такое жизнь? С точки зрения физика” сыграла
немалую роль в проникновении идей физики в биологию. Имя Шредингера,
крупного физика, хорошо известно всем физикам и химикам мира. Поэтому
его книга во многом способствовала тому, что их внимание было привлечено
к проблемам биологии. Книга продолжает служить этому и в настоящее
время. Ее цитируют во многих работах, посвященных теоретической
биологии, в том числе и в самых последних. Переиздание книги является
полезным. Читая ее сегодня, убеждаешься в том, каких больших успехов
добилась биология за последние 30 лет и как теоретические представления,
высказанные Шредингером, подтверждаются последующим ходом исследований,
которые они если не породили, то несомненно стимулировали.

В ряду самых замечательных открытий биологии XX в. стоит установление
структуры молекулы ДНК. Честь этого открытия принадлежит Ф. Крику, Дж.
Уотсону и М. Уилкинсу. Рассказывая историю этого открытия, Дж. Уотсон
пишет о Ф. Крике: “Он бросил физику и занялся биологией после того, как
в 1946 г. прочитал книгу известного физика-теоретика Эрвина Шредингера
“Что такое жизнь? С точки зрения физика”. В этой книге очень изящно
излагается предположение, что гены представляют собой важнейшую
составную часть живых клеток, а потому понять, что такое жизнь, можно,
только зная, как ведут себя гены. В то время, когда Шредингер писал свою
книгу (в 1944 г.), господствовало мнение, что гены — это особый тип
белковых молекул. Однако почти тогда же бактериолог Освальд Эвери
проводил... свои опыты, которые показали, что наследственные признаки
одной бактериальной клетки могут быть переданы другой при помощи
очищенного препарата ДНК”.

Там, где Шредингер выступает как философ, он допускает ряд серьезных
ошибок. Советский читатель, хорошо знающий основные положения
диалектического материализма, сразу заметит их. Эпилог, который не
представляет научной ценности, в настоящем издании опущен.

9

В заключение мы приводим небольшой список литературы, где перечислены
работы, освещающие современное состояние вопросов, поднятых Шредингером.
Написаны эти книги просто и ясно, что делает их доступными широкому
кругу читателей.

Дубинин Н. П. Некоторые методологические проблемы генетики. М.,
“Знание”, 1968.

Малиновский А. А. Пути теоретической биологии М., “Знание”, 1969.

P о уз С. Химия жизни. Перев. с анг. М., “Мир”, 1968. К е н д p ь ю Дж.
Нить жизни. Перев. с анг. М., “Мир”, 1969 Уотсон Дж. Д. Двойная спираль.
Перев. с анг М “Мир”, 1969. 

Алиханян С. И. Современная генетика. М., “Наука”, 1967.

Уотсон Дж. Молекулярная биология гена. Перев с анг М., “Мир”, 1967.

А. Малиновский

Г. Порошенко

10

Homo liber nulla de re minus quam de morte cogitat; et ejus sapientia
non mortis sed vitae meditatio est.

S p i n о z z a. Ethica, P. IV, Prop. 67 .*

Предисловие

Принято считать, что ученый должен в совершенстве знать определенную
область науки, и поэтому ему не следует писать по таким вопросам, в
которых он не является знатоком. Это рассматривается как noblesse oblige
**. Однако для достижения моей цели я хочу отказаться от noblesse и
поэтому прошу освободить меня от вытекающих отсюда обязательств. Мое
отступление от этого правила объясняется следующим.

Мы унаследовали от наших предков острое стремление к цельному,
всеобъемлющему знанию. Само название высших институтов познания
—университеты — напоминает нам, что с давних пор и на протяжении многих
столетий универсальный характер знаний — единственное, к чему может быть
полное доверие. Но расширение и углубление разнообразных отраслей знания
в течение последних 100 с лишним лет поставило нас перед странной
дилеммой. G одной стороны, мы чувствуем, что только теперь начинаем
приобретать надежный материал для того, чтобы свести в единое целое все
до сих пор известное, а с другой стороны, становится почти невозможным
для одного ума полностью овладеть более чем одной небольшой специальной
частью науки.

Я не вижу выхода из этого положения (чтобы при этом наша основная цель
не оказалась потерянной навсегда), если только кое-кто из нас не рискнет
взяться за синтез

___________________

* Человек свободный ни о чем так мало не думает, как о смерти, и его
мудрость состоит в размышлении не о смерти, а о жизни. — Спиноза. Этика,
ч. IV, теор. 67.

** “Благородство обязывает” (франц.). В данном случае означает, что
звание ученого обязывает не нарушать взятых на себя обязательств —
судить как настоящему ученому лишь с полным знанием дела. — Прим. перев.

11

фактов и теорий, хотя наше знание в некоторых областях неполно и
получено из вторых рук и хотя мы можем подвергнуться опасности
показаться невеждами.

Пусть это послужит мне извинением.

Нельзя отбрасывать в сторону и трудности с языком. Родной язык каждого
является как бы хорошо пригнанной одеждой, и нельзя чувствовать себя
вполне свободно, когда не сразу можешь подобрать нужное слово и его
приходится заменять другим. Я очень благодарен д-ру Инкстеру
(Тринити-колледж, Дублин), д-ру Падрайг Брауну (колледж св. Патрика,
Мэйнут) и, наконец (но не меньше, чем другим), мистеру С. К. Робертсу.
Им доставило много забот подогнать на меня новое одеяние, и это
усугублялось еще тем, что порой я не хотел отказаться от своего
несколько “оригинального” стиля. Если что-либо от него сохранилось,
несмотря на стремление моих друзей смягчить мой стиль, то это должно
быть отнесено на мой, а не на их счет.

Э. Ш.

 

I. Подход классического физика к предмету

Cogito, ergo sum. Descartes*

1.Общий характер и цели исследования.

Эта небольшая книга возникла из курса публичных лекций, прочитанных
физиком-теоретиком перед аудиторией, насчитывавшей около 400 человек.
Аудитория почти не уменьшалась, хотя с самого начала слушатели были
предупреждены, что предмет изложения труден и лекции не могут считаться
популярными, несмотря на то, что наиболее страшное орудие физика —
математическая дедукция — здесь вряд ли будет использоваться. И не
потому, что предмет настолько прост, чтобы его можно было объяснить без
привлечения математического аппарата, а, скорее, потому, что он слишком
запутан и не вполне доступен математической интерпретации. Другой
особенностью лекций, придающей им по крайней мере внешний
популяризаторский характер, было намерение лектора сделать основную
идею, связанную и с биологией и с физикой, ясной как для физиков, так и
для биологов.

Действительно, несмотря на разнообразие тем, рассмотренных в книге, в
целом она должна передать только одну мысль, только одно небольшое
пояснение к большому и важному вопросу. Чтобы не уклониться в сторону,
будет полезно заранее кратко изложить наш замысел.

Большой, важный и очень часто обсуждаемый вопрос заключается в
следующем: как физика и химия смогут объяснить те явления в пространстве
и времени, которые происходят внутри живого организма?

Предварительный ответ, который постарается дать эта небольшая книга,
можно сформулировать так: явная неспособность современной физики и химии
объяснить такие явления совершенно не дает оснований сомневаться в том,
что они могут быть объяснены этими науками ** в будущем.

______________________

* Мыслю, значит существую. — Декарт.

** Не следует забывать, что в данном случае речь идет о физике 1943 г.—
Прим. перев.

13

2. Статистическая физика. Основное различие в структуре

Предыдущее замечание было бы весьма тривиальным, если бы оно имело целью
только стимулировать надежду достигнуть в будущем того, что не было
достигнуто в прошлом. Оно, однако, имеет гораздо более положительный
смысл, т. е. неспособность физики и химии до настоящего времени дать
ответ полностью объяснима.

Благодаря умелой работе биологов, главным образом генетиков, за
последние 30—40 лет стало достаточно много известно о действительной
материальной структуре организмов, чтобы понять, почему современные
физика и химия не могли объяснить явления, происходящие в пространстве и
времени внутри живого организма.

Расположение и взаимодействие атомов в наиболее важных частях живого
организма коренным образом отличаются от того расположения атомов, с
которым физики и химики имели до сир пор дело в своих экспериментальных
и теоретических исследованиях. Однако это отличие, которое я только что
назвал коренным, легко может показаться ничтожным всякому, кроме физика,
глубоко убежденного в том, что законы физики и химии являются законами
статистическими *. Именно со статистической точки зрения структура
важнейших частей живого организма полностью отличается от структуры
любого вещества, с которым мы, физики и химики, имели до сих пор дело
практически в наших лабораториях и теоретически за письменным столом **.
Конечно, трудно представить, чтобы законы и правила, нами открытые, были
непосредственно приложимы к поведению систем, не имеющих тех структур,
на которых основаны эти законы и правила.

Нельзя ожидать, чтобы нефизик мог понять (не говорю уже — оценить) все
различие в статистической структуре, сформулированное в терминах столь
абстрактных, как только что сделал это я. Чтобы дать моему утверждению
жизнь и краски, разрешите мне предварительно обратить внимание на то,
что будет детально объяснено позднее. Наиболее существенную часть живой
клетки — хромосомную нить — можно с полным основанием назвать апериоди-

____________________

* Это утверждение может показаться несколько общим. Обсуждение должно
быть отложено до конца этой книги (см. §§ 65 и 66).

** Эта точка зрения была подчеркнута в двух наиболее вдохновенных
работах Ф. Г. Доннана.

14

ческим кристаллом. В физике мы до сих пор имели дело только с
периодическими кристаллами. Для физика периодические кристаллы являются
весьма интересными и сложными объектами; они составляют одну из наиболее
очаровательных и сложных структур, которыми неодушевленная природа
приводит в замешательство интеллект физика. Однако по сравнению с
апериодическими кристаллами они кажутся несколько элементарными и
скучными. Различие в структуре здесь такое же, как между обычными
обоями, на которых один и тот же рисунок повторяется с правильной
периодичностью, и шедевром вышивки, скажем рафаэлевским гобеленом,
который повторяет сложный, последовательный и полный замысла рисунок,
начертанный великим мастером.

Называя периодический кристалл одним из наиболее сложных объектов
исследования, я имел в виду собственно физика. Органическая химия в
изучении все более и более сложных молекул действительно подошла гораздо
ближе к тому “апериодическому кристаллу”, который, на мой взгляд,
является материальным носителем жизни. Поэтому не удивительно, что
химик-органик уже сделал большой и важный вклад в решение проблемы
жизни, в то время как физик не внес почти ничего *.

3. Подход к предмету у наивного физика

После того как я кратко изложил общую идею или, вернее, основную цель
нашего исследования, позвольте мне описать самую линию атаки.

Я намереваюсь сначала развить то, что вы можете назвать “представлениями
наивного физика об организмах”. Это те представления, которые могут
возникнуть у физика, когда, изучив свою физику и, в частности, ее
статистические основы, он начнет размышлять об организмах, об их
поведении и жизнедеятельности и честно задаст себе вопрос, — сможет ли
он исходя из своих знаний, с позиций своей сравнительно простой, ясной и
скромной науки сделать сколь-нибудь полезный вклад в данную проблему.

Выяснится, что он это сделать может. Следующим шагом должно быть
сравнение теоретических ожиданий фи-

________________________

* За годы, прошедшие со времени написания книги, физики внесли большой
вклад в изучение материальных носителей жизни. Достаточно вспомнить, что
структура молекулы ДНК была расшифрована физиками на основе
рентгеноструктурного анализа. — Прим. пер ев.

15

зика с биологическими фактами. Тут обнаружится, что хотя в целом его
представления кажутся вполне разумными, их тем не менее надо значительно
уточнить. Этим путем мы постепенно приблизимся к правильной точке зрения
или, говоря скромнее, к той точке зрения, которую я считаю правильной.

Даже если я и прав, то не знаю, является ли мой путь действительно
лучшим и простейшим. Но это был мой собственный путь. “Наивный физик” —
это я сам. И я не вижу лучшего и более ясного способа для достижения
цели, чем мой собственный, хотя быть может и извилистый путь.

4. Почему атомы так малы?

Хороший способ развить представления наивного физика — это задать ему
сначала странный, почти нелепый вопрос. Почему атомы так малы? А они
ведь действительно очень малы. Каждый маленький кусочек вещества, к
которому мы ежедневно прикасаемся, содержит их огромное количество.
Предложено много примеров, чтобы довести этот факт до сознания широкой
публики и самым выразительным из них был пример, приведенный лордом
Кельвином. Представьте, что вы смогли пометить все молекулы в стакане
воды, а после этого вылили содержимое стакана в океан и тщательно
перемешали, чтобы меченые молекулы равномерно распределились по всем
морям мира. Если вы затем зачерпнете стакан воды наугад, в любом месте
океана, то обнаружите в нем около 100 помеченных вами молекул *.

Действительные размеры атомов** лежат приблизительно между 1/5000 и
1/2000 длины волны света. Это сравнение имеет особое значение, так как
длина волны приблизительно соответствует величине самой маленькой
частицы, которую еще можно различить под микроскопом.

______________________

* Конечно, вы не найдете точно 100 молекул (даже если бы это был
идеально точный результат вычисления). Вы обнаружите 88, или 95, или
107, или 112, но практически невероятно, чтобы вы нашли 50 или 150
молекул. Возможное отклонение, или флюктуация, будет порядка корня
квадратного из 100, т. е. 10. Статистически это выражают, говоря, что вы
найдете 100 ± 10 молекул. Этим замечанием в данный момент можно
пренебречь, но мы к нему вернемся, как к примеру статистического ??n
закона.

** Согласно современной точке зрения, атом не имеет отчетливых границ,
так что “размер” атома не является достаточно точным понятием. Мы можем
заменить его расстояниями между центрами атомов в твердых или жидких
телах, но, конечно, не в газообразных, где эти расстояния при нормальных
давлении и температуре, грубо говоря, в 10 раз больше. — Прим. перев.

16

Таким образом, мы видим, что такая частица содержит еще тысячи миллионов
атомов.

Итак, почему атомы так малы?

Ясно, что этот вопрос является обходным, так как, задавая его, мы
невольно сопоставляем размеры атомов с размерами различных организмов, в
частности, нашего собственного тела. В самом деле, атом мал, когда он
сравнивается с используемой в повседневной жизни мерой длины, скажем, с
ярдом или метром. В атомной физике за единицу длины принят так
называемый ангстрем (А), равный 10-10 метра (м) или в десятичном
изображении 0,0000000001 м. Диаметр атомов лежит между 1 и 2 А. Единицы
же длины, по сравнению с которыми атомы так малы, прямо связаны с
размерами нашего тела.

Бытует легенда, которая приписывает происхождение ярда чувству юмора
одного английского короля. Когда советники спросили его, что принять за
единицу длины, то он вытянул руку в сторону и сказал: “Возьмите
расстояние от середины моей груди до кончиков пальцев, это и будет то,
что надо”. Было так или нет, но этот рассказ имеет прямое отношение к
нашему вопросу. Естественно, что король хотел указать длину, сравнимую с
длиной его тела, так как он знал, что иначе мера будет очень неудобной.
При всем своем пристрастии к ангстремам физик все-таки предпочтет, чтоб
ему сказали, что на его новый костюм потребуется 6,5 ярда твида, а не 65
тысяч миллионов ангстремов.

Таким образом, в действительности наш вопрос касается не одного, а двух
размеров — нашего тела и атома. Принимая во внимание несомненный
приоритет независимого существования атома, вопрос прозвучит так: почему
наше тело должно быть таким большим по сравнению с атомом?

Многие, страстно изучающие физику или химию, не раз жалели о том, что
все наши органы чувств, составляющие более или менее существенную часть
нашего тела и (принимая во внимание значительные размеры приведенного
отношения) сами составленные из бесчисленного количества атомов,
оказываются слишком грубыми, чтобы воспринимать удары отдельного атома.
Мы не можем ни видеть, ни слышать, ни чувствовать отдельных атомов. Наши
гипотезы об атомах далеко отстоят от непосредственного восприятия наших
органов чувств, и эти гипотезы нельзя проверить прямым наблюдением.

17

Обязательно ли должно быть так? Имеются ли основа ния для этого? Можно
ли объяснить это положение каким-то принципом, чтобы убедиться в том,
что ничто другоо несовместимо с законами природы? Это уже является такой
проблемой, которую физик способен выяснить полностью и на все вопросы
получить утвердительный ответ.

5. Работа организма требует соблюдения точных физических законов

Если бы дело обстояло не так, если бы человеческий организм был столь
чувствителен, что несколько атомов или даже отдельный атом могли бы
оказать заметное воздействие на наши органы чувств, — о небо, на что
была бы похожа наша жизнь! Такой организм был бы наверняка неспособен
развить упорядоченную мысль, которая, пройдя сквозь длинный ряд более
ранних стадий, наконец, произвела бы среди многих других идей и самую
идею об атоме.

Хотя мы выбираем в качестве иллюстрации лишь один этот пример, однако
все последующие соображения также вполне применимы и к функционированию
других органов (а не только мозга и органов чувств). Тем не менее
имеется одно и только одно, представляющее особый интерес для нас в нас
самих, — это то, что мы можем чувствовать, думать и понимать.

В отношении тех физиологических процессов, которые ответственны за наши
мысли и чувства, все другие процессы в организме играют вспомогательную
роль, по крайней мере с человеческой точки зрения, если не с точки
зрения объективной биологии. Более того, наша задача будет чрезвычайно
облегчена, если мы выберем для исследования такой процесс, который
сопровождается субъективными событиями, хотя мы и не знаем истинной
природы этого параллелизма. Действительно, на мой взгляд, природа этого
параллелизма лежит в стороне от области естественных наук и, весьма
возможно, за пределами человеческого понимания.

Таким образом, возникают следующие вопросы. Почему наш мозг и связанная
с ним система органов чувств должны обязательно состоять из такого
необъятно большого количества атомов, чтобы физиологически изменчивые
состояния мозга могли находиться в тесном и близком соответствии с
весьма развитой мыслью? По каким причинам это соответствие несовместимо
с таким тонким и чувствительным строением всего механизма (или хотя бы
его периферических частей), которое позволило бы при взаи-

18

модействии с окружающей средой регистрировать воздействие единичного
атома извне и реагировать на него.

То, что мы называем мыслью, само по себе есть нечто упорядоченное и
приложимо только к аналогичному материалу, то есть к познанию или опыту,
которые тоже имеют определенную степень упорядоченности. Отсюда вытекают
два следствия: 1) физическая организация, чтобы быть в тесном
соответствии с мыслью (как, например, мой мозг с моей мыслью), должна
быть очень хорошо упорядоченной организацией, а это значит, что события,
происходящие в мозгу, должны подчиняться строгим физическим законам, по
крайней мере с очень большой степенью точности; 2) физические
впечатления, произведенные на эту физическую, хорошо организованную
систему телами извне, соответствуют познанию и опыту соответствующих
мыслей, образуя их материал, как я назвал его. Следовательно, физические
взаимодействия между нашей системой и другими должны, как правило, сами
обладать известной степенью физической упорядоченности, или, иначе
говоря, они должны подчиняться строгим физическим законам с определенной
степенью точности. 

6. Физические законы основаны на атомной статистике и поэтому только
приблизительны. 

Почему же все, изложенное выше, не может быть выполнено в случае, если
организм состоит только из сравнительно небольшого количества атомов и
чувствителен к воздействиям одного или немногих атомов? Потому что мы
знаем: все атомы находятся в непрерывном хаотическом тепловом движении,
которое, так сказать, противостоит их упорядоченному поведению и не
позволяет отнести к какому бы то ни было распознаваемому закону события,
происходящие между малым числом атомов. Только при наличии огромного
количества атомов статистические законы начинают действовать и
контролировать поведение этих assemblees с точностью, возрастающей с
увеличением числа атомов, вовлеченных в процесс. Именно так события
приобретают действительно закономерные черты. Все физические и
химические законы, которые, как известно, играют важную роль в жизни
организмов, являются статистическими.

Любой другой вид закономерности и упорядоченности, который можно себе
представить, постоянно нарушается и становится недейственным вследствие
непрерывного теплового движения атомов.

19

7. Точность физических законов основана на большом количестве
участвующих атомов

Разрешите мне попытаться проиллюстрировать сказанное выше несколькими
примерами, выбранными до некоторой степени случайно и, возможно, не
самыми лучшими, но которые можно привести читателю, впервые
знакомящемуся с этим положением — положением, которое в современной
физике и химии является столь же фундаментальным, как, скажем, в
биологии тот факт, что организмы состоят из клеток, или как ньютоновские
законы в астрономии, или даже как ряд натуральных чисел 1, 2, 3, 4, 5,
... в математике. Впервые знакомящийся с вопросом не должен ожидать,
что, прочитав несколько страниц, он полностью поймет и оценит предмет,
который связан с известными именами Людвига Больцмана и Уилларда Гиббса
и называется статистической термодинамикой.

Первый пример (парамагнетизм). Если вы наполните кварцевую трубку
кислородом и поместите ее в магнитное поле, вы обнаружите, что газ *
намагничивается. Намагничивание обусловлено тем, что молекулы кислорода
являются маленькими магнитами и стремятся расположиться вдоль силовых
линий поля, как стрелка компаса (рис. 1).

Но не следует думать, что буквально все они будут ориентироваться
параллельно друг другу. Если вы удвоите напряженность поля, то в нашем
кислородном теле удвоится намагниченность, и эта пропорциональность
будет соблюдаться до полей очень высокой напряженности, —
намагниченность будет увеличиваться в той же степени, как и
напряженность поля, которую вы прилагаете.

Это особенно яркий пример чисто статистического закона. Ориентации,
которую стремится вызвать магнитное поле, непрерывно противодействует
тепловое движение, обусловливающее случайную ориентацию молекул.
Результатом этой борьбы является в действительности только то, что
острые углы между осями диполей и направлением поля преобладают над
тупыми. Хотя единичные атомы непрерывно изменяют свою ориентацию, в
среднем благодаря их огромному количеству постоянно преобладает
ориентация в направлении поля и пропорционально ему. Это

______________________

* Газ выбран потому, что он проще твердого тела или жидкости; факт, что
намагничивание в этом случае крайне слабо, не нарушает теоретических
заключений.

20

остроумное объяснение принадлежит французскому физику П. Ланжевену. Оно
может быть проверено следующим образом. Если наблюдающееся слабое
намагничивание действительно является результатом двух соперничающих
тенденций — магнитного поля, которое стремится ориентировать все
молекулы параллельно, и теплового движения, которое вызывает их
случайную ориентацию, то, значит, можно увеличить намагничивание, не
усиливая поля, а ослабляя тепловое движение, то есть понижая температуру
газа. Это было подтверждено экспериментом, который показал, что
намагничивание вещества обратно пропорционально его абсолютной
температуре, а это находится в количественном согласии с теорией
(законом Кюри). Современная экспериментальная техника позволяет путем
понижения температуры довести тепловое движение молекул до таких малых
размеров, что ориентирующая тенденция магнитного поля может проявить
себя если не полностью, то в достаточной степени, чтобы произвести
существенную часть “полного намагничивания”. В этом случае мы больше не
можем ожидать, что дальнейшее удвоение напряженности поля удвоит и
намагниченность. Последняя с увеличением напряженности поля будет
увеличиваться все меньше и меньше, приближаясь к тому, что называется
насыщением. Это предположение также количественно подтверждается
экспериментом.

Заметьте, что такое поведение целиком зависит от наличия огромного
количества молекул, которые совместно участвуют в создании наблюдаемого
явления намагничивания. В противном случае намагничивание не подчинялось
бы определенному закону и изменялось бы совершенно бессистемно,
свидетельствуя о превратностях борьбы между внешним магнитным полем и
тепловым движением.

Второй пример (броуновское движение, диффузия). Если вы наполните нижнюю
часть закрытого стеклянного сосуда туманом, состоящим из мельчайших
капелек, вы увидите, что верхняя граница тумана постепенно понижается с
совершенно определенной скоростью, зависящей от вязкости воздуха,
размера и плотности капелек. Но если вы посмотрите на одну из капелек в
микроскоп, то увидитe, что она опускается не с постоянной скоростью, а
совершает весьма беспорядочное, так называемое броуновское движение,
которое лишь в среднем соответствует постоянному снижению.

21

Эти капельки, хотя и не являются атомами, но уже достаточно малы и
легки, чтобы чувствовать толчки единичных молекул, которые непрерывно
воздействуют на их поверхность. Толкаемые таким образом капельки могут
только в среднем подчиняться действию силы тяжести (рис. 2 и 3).

Этот пример показывает, какие удивительные и беспорядочные впечатления
получали бы мы, если бы наши органы чувств были восприимчивы только к
ударам немногих молекул.

Имеются бактерии и другие организмы, столь малые, что они сильно
подвержены этому явлению. Их движение определяется тепловыми
флуктуациями окружающей среды; они не имеют права выбора. Если они
обладают собственной подвижностью, то все же могут передвигаться с
одного места на другое, но только с большим трудом, поскольку тепловое
движение швыряет их, как маленькую лодку в бушующем море.

Очень сходно с броуновским движением явление диффузии. Представьте себе
сосуд, наполненный жидкостью, скажем водой, с небольшим количеством
какого-нибудь красящего вещества, растворенного в ней, например
перманганата калия, но не в равномерной концентрации, а скорее так, как
показано на рис. 4, где точки означают молекулы растворенного вещества и
где концентрация уменьшается слева направо.

Если вы оставите эту систему в покое, то начнется весьма медленный
процесс диффузии. Перманганат будет распространяться в направлении слева
направо, то есть от места более высокой концентрации к месту более
низкой концентрации, пока, наконец, не распределится равномерно по всему
объему воды.

В этом довольно простом и, очевидно, не особенно интересном процессе
замечательно то, что он ни в какой степени не связан с какой-либо
тенденцией или силой, которая, как это можно было бы подумать, влечет
молекулы перманганата из области, где очень тесно, в область, где
посвободней, подобно тому как, например, население страны переселяется в
ту часть, где больше простора. С нашими молекулами перманганата ничего
подобного не происходит. Каждая из них ведет себя совершенно независимо
от других молекул, с которыми она встречается весьма редко. Каждая из
них как в области большей тесноты, так и в более свободной части
испытывает одну и ту же судьбу. Ее

22 

непрерывно толкают молекулы воды, и, таким образом, она постепенно
продвигается в совершенно непредсказуемом направлении: по прямой в
сторону или более высокой или более низкой концентрации. Характер
движений, которые она выполняет, часто сравнивают с движением человека,
которому завязали глаза на большой площади и велели “пройтись”, но
который не может придерживаться определенного направления, и таким
образом, непрерывно изменяет линию своего движения.

Тот факт, что беспорядочное движение молекул перманганата все же должно
вызывать регулярный ток в сторону меньшей концентрации и в конце концов
привести к выравниванию концентраций, на первый взгляд кажется
непонятным, но только на первый взгляд. При тщательном рассмотрении на
рис. 4 тонких слоев почти постоянной концентрации можно представить
себе, как молекулы перманганата, которые в данный момент содержатся в
определенном слое, беспорядочно двигаясь, будут с равной вероятностью
перемещаться и направо, и налево. Но именно вследствие этого поверхность
раздела двух соседних слоев будет пересекаться большим количеством
молекул, приходящих слева, а не в обратном направлении. Это произойдет
просто потому, что слева больше беспорядочно движущихся молекул, чем
справа, и до тех пор, пока это так, будет происходить регулярное
перемещение слева направо, пока, наконец, не наступит равновесное
распределение.

Если эти соображения перевести на математический язык, то получим
дифференциальное уравнение в частных производных, описывающее
математически точно закон диффузии

 

Объяснением этого закона я не буду утруждать читателя, хотя сделать это
достаточно просто *. О строгой “математической точности” закона
упоминается здесь для того,

_________________

* Концентрация в любой данной точке увеличивается (или уменьшается) со
скоростью, прямо пропорциональной сравнительному избытку (или
недостатку) концентрации в ее бесконечно малом окружении. Закон
теплопередачи имеет, между прочим, точно такую же форму, если
“концентрацию” заменить “температурой”.

23

чтобы подчеркнуть, что его физическая сущность должна, тем не менее,
проверяться в каждом конкретном случае. Будучи основана на случайности,
справедливость закона будет только приблизительной. Если имеется, как
правило, достаточно хорошее приближение, то это только благодаря
огромному количеству молекул, которые принимают участие в явлении. Чем
меньше их количество, тем больше случайных отклонений мы должны ожидать,
и при благоприятных условиях эти отклонения действительно наблюдаются.

Третий пример (пределы точности измерения). Последний пример, который я
приведу, сходен со вторым, но имеет особый интерес. Легкое тело,
подвешенное на длинной тонкой нити и находящееся в равновесии, часто
используется физиками для измерения слабых сил, отклоняющих его от этого
положения, то есть для измерения электрических, магнитных или
гравитационных сил, прилагаемых так, чтобы повернуть его около
вертикальной оси (для каждой конкретной цели, естественно, следует
выбирать соответствующее легкое тело). Продолжающиеся попытки повысить
точность этого весьма часто используемого варианта “крутильных весов”
столкнулись с любопытным пределом, который чрезвычайно интересен сам по
себе. Выбирая все более и более легкие тела и более тонкую и длинную
нить, чтобы сделать весы чувствительными ко все более слабым силам,
достигают предела, когда подвешенное тело становится уже чувствительным
к ударам теплового движения окружающих молекул и начинает исполнять
непрерывный “танец” около своего равновесного положения — танец, весьма
сходный с дрожанием капли, описанным во втором примере. Это поведение не
определяет еще абсолютного предела точности измерений на подобных весах,
однако оно все-таки указывает практически на предел измерений. Не
поддающийся контролю эффект теплового движения конкурирует с действием
той силы, которую следует измерить, и лишает значения единичное
наблюдаемое отклонение. Вы должны проделать свои измерения много раз,
чтобы нейтрализовать эффект броуновского движения вашего инструмента.

Этот пример, я думаю, является особенно наглядным, ибо наши органы
чувств в конце концов представляют собой тоже своего рода инструмент. Мы
можем видеть, какими бесполезными они были, если бы стали слишком
чувствительными.

24

8. Правило ??n

Примеров приведено, я думаю, достаточно. Добавлю только, что нет ни
одного закона физики и химии из тех, которые имеют отношение к организму
или к его взаимодействию с окружающей средой, который не мог быть выбран
в качестве примера. Объяснение может оказаться более сложным, но главное
всегда останется тем же самым.

Но я хотел бы остановиться еще на одном важном количественном положении,
касающемся степени неточности, которую надо ожидать в любом физическом
законе. Это так называемый закон ??n. Сначала я проиллюстрирую его
простым примером, а дальше сделаю обобщение.

Пусть некоторый газ при определенных давлении и температуре имеет
определенную плотность, тогда я могу это выразить, сказав, что внутри
данного объема (который по размеру подходит для эксперимента) при данных
условиях имеется n молекул газа. Если в какой-то момент времени вы
захотите проверить мое утверждение, то найдете его неточным: отклонение
будет порядка ??n. Следовательно, если n =100, то отклонение составит
приблизительно 10. Таким образом, относительная погрешность измерения
равна 10%. Но если п = 1000 000, то, вероятно, отклонение будет равным
примерно 1000, и относительная погрешность 0,1%. Грубо говоря, этот
статистический закон является весьма общим. Законы физики и физической
химии неточны в пределах вероятной относительной погрешности, имеющей
порядок ??n, где n — количество молекул, участвующих в проявлении этого
закона — в его осуществлении внутри той области пространства или времени
(или и пространства и времени), которая подлежит рассмотрению.

Таким образом, вы снова видите, что организм должен представлять собой
относительно большую структуру, состоящую из множества атомов, чтобы
наслаждаться благоденствием вполне точных законов как в своей внутренней
жизни, так и при взаимодействии с внешним миром. Если бы количество
участвующих частиц было слишком мало, то “закон” оказался бы слишком
неточным. Особенно важным требованием является закон квадратного корня,
потому что хотя 1000 000 и достаточно большое число, однако точность 1
на 1000 не является чрезмерно хорошей, если существо дела претендует на
то, чтобы быть “Законом Природы”.

25

II. Механизм наследственности

Das Sein ist ewig; denn Gesetze Bewahren die Lebend'gen Schaetze, Aus
welchen sih das All geschmueckt. Goethe*

9. Выводы влассвчесвого физика, будучи далеко не тривиальными,
оказываются неверными

Итак, мы пришли к заключению, что организм со всеми протекающими в нем
биологическими процессами должен иметь весьма “многоатомную” структуру;
необходимо также, чтобы случайные “одноатомные” явления не играли в нем
слишком большой роли. Существенно, говорит наивный физик, чтобы в основе
организма лежали достаточно точные физические законы, на основе которых
он мог бы организовать свою исключительно регулярную и хорошо
упорядоченную работу. В какой степени приложимы к реальным биологическим
фактам эти выводы, сделанные a priori, то есть с чисто физической точки
зрения?

На первый взгляд может показаться, что эти выводы довольно тривиальны.
Биолог, скажем, лет 30 назад мог утверждать, что хотя
лектору-популяризатору вполне уместно подчеркнуть значение законов
статистической физики при функционировании организма, как и любой другой
системы, однако это утверждение, пожалуй, чересчур избитая истина, ибо
действительно не только организм взрослого индивидуума любого
высокоразвитого существа, но и каждая клетка его содержит “космическое”
число единичных атомов. И каждый отдельный физиологический процесс,
который мы наблюдаем или внутри клетки, или при ее взаимодействии с
внешней средой, кажется (или казалось лет 30 назад), вовлекает такое
огромное количество единичных атомов и единичных атомпых процессов, что
точное выполнение законов физики и физической химии гарантировано даже
при весьма жестком требовании

________________________

* Бытие вечно, ибо существуют законы, охраняющие сокровища жизни,
которыми украшает себя Вселенная. — Гете.

26

статистической физики в отношении “больших чисел”. Это требование я
только что проиллюстрировал правилом ??n.

Теперь мы знаем, что такая точка зрения была бы ошибочной. Как мы сейчас
увидим, невероятно маленькие группы атомов, слишком малые, чтобы
проявлять точные статистические законы, играют главенствующую роль в
весьма упорядоченных и закономерных процессах внутри каждого организма.
Они управляют видимыми признаками большого масштаба, которые организм
приобретает в течение своего развития; они определяют важные особенности
его функционирования, и во всем этом проявляются весьма отчетливые и
строгие биологические законы.

Я должен начать с краткого подведения итога достижений биологии и, в
частности, генетики; другими словами, я должен подытожить современное
состояние знаний в той области, где я — не авторитет. Этого нельзя
избежать, и поэтому я приношу извинения, особенно биологу, за
дилетантский характер изложения. Я прошу также разрешения изложить
господствующие представления более пли менее догматично. От “бедного”
физика-теоретика нельзя ожидать, чтобы он сделал что-нибудь подобное
компетентному обзору экспериментальных данных, полученных в результате
большого количества великолепно выполненных серий экспериментов по
скрещиванию, задуманных с беспрецедентным остроумием, с одной стороны, и
прямых наблюдений над живой клеткой, проведенных со всей утонченностью
современной микроскопии, — с другой.

10.Наследственный шифровальный код (хромосомы) 

Разрешите мне воспользоваться словом “план (pattern) организма” в том
смысле, в каком биолог называет его “планом в четырех измерениях”,
подразумевая при этом не только структуру и функционирование организма
во взрослом состоянии или на любой другой стадии развития, но и организм
в его онтогенетическом развитии от оплодотворенной яйцеклетки до стадии
зрелости, когда он начинает размножаться. Теперь известно, что этот план
в четырех измерениях определяется структурой всего одной клетки, а
именно структурой оплодотворенного яйца. Более того, мы знаем, что он в
основном определяется структурой только одной небольшой части этой
клетки, ее ядром. Такое ядро в обычном “покоящемся” состоянии клетки
представляется как сетка хрома-

27

тина *, распределенного в виде пузырька внутри клетки. Но во время
жизненно важных процессов клеточного деления (митоза или мейоза, см.
ниже) видно, что ядро состоит из набора частиц, обычно имеющих форму
нитей или палочек и называемых хромосомами, количество которых равно 8,
или 12, или, как, например, у человека, 48 **. В действительности я
должен был бы написать эти (взятые для примера) числа, как 2Х4, 2Х6,
..., 2Х24, и говорить о двух наборах, чтобы пользоваться выражением в
том обычном значении, в каком оно употребляется биологом.

Хотя отдельные хромосомы иногда отчетливо различимы и
индивидуализированы по форме и размеру, однако эти два набора хромосом
почти подобны друг другу. Как мы увидим, один набор приходит от матери
(яйцеклетка) и один — от отца (оплодотворяющий сперматозоид). Именно эти
хромосомы или, возможно, только осевая или скелетная нить того, что мы
видим под микроскопом как хромосому, содержат в виде своего рода
шифровального кода весь “план” будущего развития индивидуума и его
функционирования в зрелом состоянии ***. Каждый полный набор хромосом
содержит весь шифр, поэтому, как правило, имеются две копии последнего в
оплодотворенной яйцеклетке, которая представляет самую раннюю стадию
будущего индивидуума.

Называя структуру хромосомных нитей шифровальным кодом, мы
подразумеваем, что все охватывающий ум, вроде такого, который некогда
представлял себе Лаплас и которому каждая причинная связь
непосредственно открыта, мог бы, исходя из структуры хромосом, сказать,
разовьется ли яйцо при благоприятных условиях в черного пе-

________________________

* Это слово означает вещество, которое окрашивается в процессе
окрашивания, широко применяемом в микроскопической технике.

** В настоящее время установлено, что у человека 46 (2х23)
хромосом.—Прим. перев.

*** Действительно, исследования последних лет показали, что основной
“код наследственности” заключен в нити ДНК, которая составляет ось
хромосомы. Установлено, что у микроорганизмов единицей кода являются три
нуклеотида, последовательно располагающихся по длине молекулы ДНК.
Хромосомы высших органиэмов построены значительно сложнее Процесс
считывания наследcтвенной информации у них не столь ясен. Но, вероятно,
в общих чертах он подобен тому, который наблюдают у микроорганизмов. —
Прим. перев.

28

туха или в крапчатую курицу, в муху или растение маиса, в рододендрон,
жука, мышь или человека. К этому мы можем прибавить, что “внешность”
различных яйцеклеток часто бывает очень сходной, и даже если это не так
(например, огромные яйца птиц и рептилий), то различие оказывается не
столько в существующих структурах, сколько в том питательном материале,
который в этих случаях добавляется.

Но термин шифровальный код, конечно, слишком узок. Хромосомные структуры
служат в то же время и инструментом, осуществляющим развитие, которое
они же предвещают *. Они являются и кодексом законов, и исполнительной
властью или, употребляя другое сравнение, они являются одновременно и
архитектором, и строителем. Как хромосомы ведут себя в онтогенезе **? 

11. Рост организма путем клеточного деления (митоз).

Рост организма осуществляется по- следовательными клеточными делениями.
Такое клеточное деление, называемое митозом, не столь частое событие,
как этого можно ожидать, учитывая огромное количество клеток, из которых
состоит наш организм. Вначале рост идет быстро, яйцеклетка делится на
две “дочерние”, которые затем дают поколение из четырех клеток, далее из
8, 16, 32, 64, ... и т. д. Частота деления не одинакова во всех частях
растущего организма, и это нарушает регулярность этих чисел. Но путем
простого вычисления можно установить, что в среднем достаточно 50 или 60
последовательных делений, чтобы образовалось то количество клеток ***,
которое имеет взрослый человек, или, скажем, в десять раз больше, если
принять во внимание смену клеток в течение жизни. Таким образом, клетки
моего организма в среднем оказываются

____________________

* Предположение Шредингера о хромосомах как носителях шифровального кода
вполне соответствует данным современной пауки, но представление о них
как и об инструментах, осуществляющих индивидуальное развитие, спорно. В
настоящее время ряд исследователей изучает роль белков-гистонов,
находящихся в хромосомах и регулирующих процесс считывания
наследственной информации с молекул ДНК. Очень перспективны работы Р. И.
Салганика по изучению регулирования активности генов гормонами и работы
Ю М. Оленова по контролированию процесса индивидуального развития
эпигенетическими факторами — Прим перев.

** Онтогенез — развитие индивидуума в течение его жизни, в отличие от
филогенеза — развития вида в течение геологических периодов

*** Весьма грубо—1017 или 1018.

29

только пятидесятым или шестидесятым поколением того яйца, которым я
когда-то был *.

12. В митозе каждая хромосома удваивается.

Как ведут себя хромосомы в митозе? Они удваиваются, удваиваются оба
набора, обе копии шифра. Этот процесс чрезвычайно интересный, поэтому
его интенсивно изучали, но он слишком сложен для того, чтобы описывать
здесь его детали. Основное заключается в том, что каждая из двух
дочерних клеток получает “приданое”, состоящее из обоих наборов
хромосом, в точности подобных тем, какие были у родительской клетки.

Таким образом, все клетки тела (соматические клетки. — Прим. пере в.)
совершенно подобны друг другу в отношении их хромосомного сокровища **.
Каждая, даже менее важная клетка обязательно обладает полной (двойной)
копией шифровального кода. Как бы мы мало ни знали об этом механизме, мы
не можем, однако, сомневаться, что этот факт должен иметь какое-то
важное отношение к жизни организма.

Самым удивительным представляется сохранение удвоенного хромосомного
набора при всех митотических делениях. То, что это важная особенность
генетического механизма, наиболее разительно подтверждается одним
единственным исключением из этого правила, исключением, которое мы и
должны теперь рассмотреть.

13. Редукционное деление (мейоз) в оплодотворение (сингамия)

Очень скоро после начала развития особи одна группа клеток резервируется
для образования позднее так называемых гамет, то есть спермиев или
яйцеклеток (зависит от пола особи), необходимых для размножения
индивидуума в зрелости.

“Резервируются” —это значит, что они не служат другим целям и испытывают
значительно меньше митотическпх делений. Происходящее в них необычное
редукционное

_____________________

* В настоящее время установлено, что соматическая клетка, как правило,
совершает не более 50—60 делений и после этого гибнет. Высказывается
предположение, что этими 50—60 делениями обусловлена смертность
многоклеточных организмов По мнению ряда исследователей, для клетки
высших организмов существует лишь два пути “к бессмертию”: или
превращение в половую клет ку с зачатием из нее нового организма, или
перерождение в зло качественную опухолевую клетку. — Прим. перев.

** Биолог извинит меня за то, что в этом кратком изложении я не
рассматриваю случая мозаиков, являющегося исключением.

30

деление, называемое мейозом, является тем делением, которым завершается
развитие гамет у зрелой особи. Это деление, как правило, происходит лишь
незадолго до сингамии. В мейозе двойной хромосомный набор родительской
клетки просто делится на два единичных набора, каждый из которых идет в
одну из двух дочерних клеток — гамет. Другими словами, в мейозе не
происходит митотического удвоения количества хромосом, количество их
остается постоянным, и, таким образом, каждая гамета получает только
половину, то есть только одну полную копию шифровального кода, а не две,
например у человека только 24, а не 48 *.

Клетки, имеющие только один хромосомный набор, называются гаплоидными
(от греческого ?????? — единственный). Таким образом, гаметы гаплоидны,
а обычные клетки тела диплоидны (от греческого ??????? — двойной).
Иногда также встречаются индивидуумы с тремя, четырьмя или, вообще
говоря, с многими хромосомными наборами во всех клетках, и они тогда
называются триплоидами, тетраплоидами, ..., полиплоидами.

В акте сингамии мужская гамета (сперматозоид) и женская гамета (яйцо),
то ость гаплоидные клетки, соединяются, чтобы образовать оплодотворенную
яйцеклетку, которая, следовательно, диплоидна. Один из ее хромосомных
наборов приходит от матери, а другой — от отца.

Фотографии (рис. 5 и 6) дают нам некоторое представление о том, как
выглядят хромосомы под микроскопом. Они взяты из книги доктора
Дарлингтона “Работа с хромосомами” **.

Воспользовавшись рис. 7, я попытаюсь дать схематический обзор трех
основных процессов: митоза, мейоза и сингамии у маленькой плодовой мушки
Drosophila, которая имеет гаплоидное число хромосом. Эта мушка как
объект экспериментирования сыграла выдающуюся роль в современной
генетике. Четыре различные хромосомы условно помечены разным цветом:
зеленым, черным, красным и синим. На рис. 7, а хромосомный набор
диплоидной клетки увеличен Он служит только для пояснения схем на рис.
7, б—г, которые представлены в уменьшенном виде и чисто схематически.
Разрешите мне очистить свою совесть

____________________

* См прим на стр 28.

**С D Darlington The Handling of Chromosomes. Allen and Unwin, 1942.

31

признанием, что при описании мейоза я, как и в предыдущем случае,
допустил некоторые упрощения, которые, однако, для нашей цели не имеют
значения.*

14. Гаплоидные особи.

Оговорки требует еще одно обстоятельсгво. Хотя оно и не существенно для
нашей цели, однако действительно интересно, поскольку показывает, что в
каждом единичном наборе хромосом содержится совершенно полный
шифровальный код всего “плана” организма.

Имеются примеры мейоза, когда оплодотворение осуществляется не сразу, а
сначала гаплоидная клетка (гамета) подвергается большому количеству
митотических клеточных делений, в результате чего возникает целая
гаплоидная особь. Это наблюдается у самцов пчелы — трутней, которые
развиваются партеногенетически, то есть из неоплодотворенных и поэтому
гаплоидных яиц матки. Трутень не имеет отца! Все клетки его тела
гаплоидны.

Если хотите, можно назвать его гигантским сперматозоидом; и
действительно, известно, что функционировать в этом качестве — его
единственная жизненная задача. Однако, может быть, это не серьезная
точка зрения. Ибо такой случай не единичен. Есть семейства растений, где
гаплоидные клетки, которые образуются при мейозе и называются спорами,
падают на землю как семена и развиваются в настоящие гаплоидные
растения, сравнимые по размеру с диплоидными. На рис. 8 изображено
растеньице мха, распространенного в наших лесах. Покрытая листочками
нижняя часть — гаплоидное растение, называется гаметофитом, потому что у
него наверху развиваются половые органы и гаметы, которые после
оплодотворения производят обычное диплоидное растение — голый стебелек с
семенной коробочкой. Эта часть растения называется спорофитом, так как
путем меиоза она производит споры, находящиеся в капсуле. Когда капсула
открывается, споры падают на землю и развиваются в облиственный стебель.
Этот процесс метко назван “чередованием поколений”. Вы можете, если
хотите, рассматривать человека и животных с той же точки зрения. Но
гаметофитом здесь являет-

_____________________

* В действительности мейоз — не одно деление без удвоения числа
хромосом, а два почти сливающихся деления, но с одним удвоением. В
результате образуются не две гаплоидные гаметы, а четыре.

32

ся, как правило, весьма короткоживущео одноклеточное поколение —
сперматозоид или яйцеклетка. Наше тело соответствует спорофиту. Наши
“споры” — это резервные клетки, из которых в процессе мейоза возникает
одноклеточное поколение. 

15. Значение редукционного деления.

Важным и действительно определяющим судьбу событием в процессе
воспроизведения индивидуума является не оплодотворение, а мейоз. Один
набор хромосом приходит от отца, один — от матери. Никакая случайность
не может помешать этому.

Каждый человек* получает ровно половину своей наследственности от матери
и половину от отца. То, что одна линия кажется преобладающей,
объясняется другими причинами, о которых мы поговорим позже (пол сам по
себе, конечно, тоже представляет простейший пример такого преобладания).

Но если вы проследите за происхождением вашей наследственности вплоть до
ваших дедов и бабок, то дело окажется иным. Разрешите обратить ваше
внимание на набор хромосом, пришедших ко мне от отца, в частности на
одну из них, скажем, на хромосому № 5. Это будет точная копия или той
хромосомы № 5, которую мой отец получил от своего отца, или той, которую
он получил от матери. Исход дела был решен (с вероятностью 50 к 50) в
мейозе, происшедшем в организме моего отца в ноябре 1886 г. и
произведшем тот сперматозоид, который немногими днями позже оказался
причиной моего зарождения.

Точно та же история могла бы быть повторена относительно хромосом № 1,
2, 3, ..., 24** моего отцовского набора и mutatis mutandis относительно
каждой из моих материнских хромосом.

Более того, все 48 результатов совершенно независимы***. Даже если бы
было известно, что моя отцовская хромосома № 5 пришла от моего деда
Иозефа Шредингера, то у хромосомы № 7 еще оставались бы равные шансы
произойти от него же, или от его жены Марии, урожденной Богнер.

_______________________

* Во всяком случае каждая женщина. Чтобы избежать многословия, я
исключил из этого обзора чрезвычайно интересную область определения пола
и сцепленных с полом признаков (например, так называемая цветовая
слепота),

** См. прим. на стр. 28. 

*** См. прим. на стр. 28.

33

16. Кроссинговер. Локализация свойств.

Но роль случайности в смешении дедушкиной и бабушкиной наследственности
у потомков еще больше, чем это может показаться из предыдущего описания,
когда молчаливо предполагалось или даже прямо утверждалось, что
определенные хромосомы пришли как целое или от бабушки, или от дедушки,
другими словами, единичные хромосомы пришли неразделенными. В
действительности это не так или не всегда так. Перед тем, как разойтись
при редукционном делении, скажем, при том, которое происходило в
отцовском организме, каждые две “гомологичные” хромосомы сближаются и
иногда обмениваются своими частями таким образом, как это показано на
рис. 9. На микрофотографии (рис. 10) видно это тесное сближение
хромосом.

В результате такого процесса, называемого кроссинговером (перекрестом),
два свойства, расположенные в соответствующих частях этой хромосомы,
будут разделены, и внук окажется похожим одним из своих свойств на
дедушку, а другим на бабушку *.

Явление кроссинговера, будучи не слишком редким, но и не слишком частым,
обеспечивает нас ценнейшей информацией, о расположении свойств в
хромосомах. Чтобы рассмотреть вопрос полностью, мы должны использовать
некоторые понятия, о которых будет рассказано только в следующей главе
(например, гетерозиготность, доминантность и т.д.), но так как это увело
бы нас за пределы этой маленькой книги, разрешите мне просто указать на
самое важное.

Если бы не было кроссинговера, то два признака, за которые ответственна
одна и та же хромосома, приходили бы к потомку всегда вместе, и ни одна
особь не могла бы получить один из них, не получив другого. Два же
свойства, определяемые двумя различными хромосомами, либо имели бы
вероятность 50:50 оказаться отделенными друг от друга, либо всегда
расходились бы в потомстве к разным особям, а именно тогда, когда эти
свойства расположены у

____________________

* Автор выражается неточно, говоря о расположении в хромосоме “свойств”
или “признаков”. Как он сам далее указывает, в хромосоме расположены не
сами свойства, а лишь определенные материальные структуры (гены),
различия в которых приводят к видоизменениям определенных свойств всего
организма в целом. Это надо постоянно иметь в виду, ибо Шредппгер все
время пользуется словом “свойства”.— Прим. перев.

34

предка в гомологичных хромосомах, которые во время мейоза всегда
расходятся.

Эти правила и отношения нарушаются кроссинговером, вероятность которого
может быть установлена тщательным регистрированием различных комбинаций
признаков у потомства в экспериментах по скрещиванию, поставленных
надлежащим образом. Анализируя результаты таких скрещиваний, принимают
убедительную рабочую гипотезу, что “сцепление” двух свойств,
расположенных в одной хромосоме, тем реже нарушается кроссинговером, чем
ближе эти свойства лежат одно к другому, кбо тогда менее вероятно, что
линия разрыва пройдет между ними, а свойства, расположенные ближе к
противоположным концам хромосомы, будут разделяться при каждом
кроссинговере. [То же самое применимо и к объединению в одной хромосоме
двух свойств (признаков), расположенных ранее в гомологичных хромосомах
одного и того же предка.] Таким образом, на основе “статистики
сцепления” можно составить своего рода “карты признаков” внутри каждой
хромосомы

Тщательные исследования (главным образом хромосом у Drosophila, хотя и
не только у нее) показали, что изученные признаки действительно
распадаются на такое количество отдельных групп, между которыми нет
сцепления сколько имеется хромосом (четыре у Drosophila). В пределах
каждой группы можно составить карту признаков, количественно выражающую
степень сцепления между каждой парой признаков этой группы; поэтому не
может быть больших сомнений, что они действительно расположены и
хромосоме и притом линейно, как это можно ожидать, рассматривая
хромосому палочкообразной формы.

Конечно, схема наследственного механизма, как она описана здесь, еще
бесцветна и слегка наивна. Ибо мы не сказали, что следует подразумевать
под признаком. Рассекать на дискретные “признаки” организм, который
является в сущности единым “целым”, представляется неправильным и
невозможным. В действительности мы только утверждаем в каждом отдельном
случае, что пара предков различается в определенном, хорошо выраженном
отношении (скажем, один имел голубые глаза, а другой — карие) и что
потомок сходен в этом отношении или с одним, или с другим предком. В
хромосоме мы же локализуем место этого различия. (Мы называем это место
“локусом” или, если мы думаем о гипотетической материальной структуре,
которая образует его основу — геном.) На мой взгляд, ос-

35

новным представлением служит скорее различие признаков, чем признак сам
по себе, несмотря на кажущееся словесное и логическое противоречие этого
утверждения. Различие признаков действительно дискретно. Это выявится в
следующей главе, когда мы будем говорить о мутациях и когда
представленная выше сухая схема, я надеюсь, приобретет и жизнь, и
краски.

17. Максимальный размер гена

Мы только что ввели термин ген для гипотетического материального
носителя определенной наследственной особенности. Подчеркнем теперь два
момента, которые будут иметь большое значение для нашего исследования.
Первый — размер или, лучше сказать, максимальный размер этого носителя;
другими словами, до сколь малого размера мы можем проследить локализацию
наследственных потенций. Второй момент — устойчивость гена. Это
предположение вытекает из постоянства “наследственного плана”.

Размер гена определен двумя совершенно независимыми способами. Один
основан на генетических данных (эксперименты по скрещиванию), другой—на
цитологических данных (прямое микроскопическое наблюдение). Первый
способ принципиально достаточно прост. Установив расположение различных
признаков (большого масштаба) внутри определенной хромосомы (скажем, у
мушки Drosophila), мы, чтобы определить размер гена, должны только
разделить длину этой хромосомы на количество признаков. Конечно, мы
рассматриваем в качестве отдельных признаков только такие, которые
изредка разделяются кроссинговером и не могут быть обусловлены одной и
той же (микроскопической или молекулярной) структурой. Совершенно ясно,
что при нашем расчете мы определим только максимальный размер носителя,
потому что количество признаков, изолированных при генетическом анализе,
будет непрерывно возрастать по мере того, как работа будет продолжаться.

Другая оценка размера гена, хотя и основанная на микроскопическом
наблюдении, в действительности является гораздо менее прямой.
Определенные клетки Drosophila (именно клетки слюнных желез) иногда
оказываются по каким-то причинам гигантски увеличенными; это касается и
их хромосом. В них можно различить поперечные темные полоски,
пересекающие нить (рис. 11). Дарлингтон подметил, что число этих полосок
(2000 в рассматриваемом

36

случае), хотя и заметно больше, но того же порядка, что и число генов,
локализованных в той же хромосоме и определенных на основании
экспериментов по скрещиванию. Он склонен рассматривать эти полоски как
действительные гены (или границы между генами). Разделив длину хромосомы
в нормального размера клетке на число полосок (2000), он определил объем
гена равным кубу со стороной 300 А. Учитывая грубость расчетов, можно
считать, что такой же размер имел ген, определенный первым методом.

18. Малые числа.

Подробное обсуждение того, какое отношение имеет статистическая физика
ко всем изложенным фактам, последует позже. Но разрешите мне привлечь
ваше внимание сейчас к тому обстоятельству, что 300 А — это только около
100 или 150 атомных расстояний в жидкости или твердом теле, так что ген,
несомненно, содержит не более миллиона или нескольких миллионов атомов.
Согласно статистической физике, а это значит, согласно физике вообще,
такое число слишком мало (с точки зрения закона ??n), чтобы обусловить
упорядоченное и закономерное поведение. Оно было бы слишком мало, даже
если бы все эти атомы были совершенно одинаковыми, как в газе или в
капле жидкости, а ген, несомненно, не является гомогенной каплей
жидкости. Он, вероятно, представляет собой большую белковую молекулу,
где каждый атом, каждый радикал, каждое гетероциклическое кольцо играет
индивидуальную роль, более или менее отличную от роли любых сходных
атомов, радикалов или гетероциклических колец*. Это во всяком случае
точка зрения таких ведущих генетиков нашего времени, как Холдейн и
Дарлингтон, и мы должны будем обратиться к удивительным генетическим
экспериментам, которые почти доказывают это.

19. Постоянство.

Рассмотрим теперь второй весьма важный вопрос: какую степень постоянства
мы наблюдаем у наследственных признаков и что мы поэтому должны
приписать тем материальным структурам, которые их несут.

______________________

* В настоящее время установлено, что основу гена, с которой происходит
считывание информации, составляет не белковая молекула, а молекула
дезоксирибонуклеиновои кислоты (ДНК) и индивидуальность ее определяется
последовательностью четырех белковых оснований, расположенных попарно:
аденин — тимин, гуанин — цитозин. — Прим. перев.

37

Ответ на этот вопрос может быть дан без какого-либо специального
исследования. Раз мы говорим о наследственных особенностях, значит мы
признаем это постоянство почти абсолютным. Мы не должны забывать, что от
родителя к ребенку передается не только та или иная особенность: орлиный
нос, короткие пальцы, предрасположение к ревматизму, гемофилия,
дихромазия и т. д. Такие особенности удобно вычленять для изучения
законов наследственности. Но в действительности из поколения в
поколение, без заметного изменения в течение столетий — хотя и не в
течение десятков тысяч лет, передается весь (четырехмерный) план —
фенотип, вся видимая и явная природа индивидуума. При этом в каждом
поколении передача осуществляется материальной структурой ядер тех двух
клеток, которые соединяются при оплодотворении. Это — чудо! Имеется еще
только одно большее чудо, хотя h связанное тесно с первым, но
относящееся уже к другой сфере. Я имею в виду тот факт, что мы, чье
существование целиком основано на удивительной игре именно этого
механизма наследственности, все же обладаем способностью узнать о нем
так много. Мне представляется, что в отношении первого чуда наши знания
могут дойти едва ли не до полного понимания. Второе, возможно, вообще
лежит за пределами человеческого познания.

38

III. Мутации

Und was in schwankender Erscheinung schwebt Befestiget mit dauernden
Gedanken.

Goethe*

20. “Скачкообразные” мутации — поле действия естественного отбора.

Основные факты, которые мы только что выдвинули в доказательство
устойчивости, приписываемой генной структуре, может быть, хорошо
известны, и не покажутся нам очень убедительными. Но на этот раз
поговорка, что исключения подтверждают правило, действительно верна.
Если бы не было исключений в сходстве между детьми и родителями, мы были
бы лишены не только прекрасных экспериментов, открывших нам механизм
наследственности, но и грандиозного эксперимента природы, кующего виды в
процессе естественного отбора наиболее приспособленных.

Разрешите мне взять последнюю важную проблему отправным пунктом для
того, чтобы представить относящиеся сюда факты, опять же с извинением и
напоминанием, что я не биолог.

Как мы теперь знаем, Дарвин ошибался, когда считал, что материалом, на
основе которого действует естественный отбор, являются небольшие
непрерывные, случайные изменения, обязательно встречающиеся даже в
наиболее однородной популяции, ибо доказано, что эти изменения не
наследуются. Этот факт достаточно важен, чтобы его кратко
проиллюстрировать. Если вы возьмете чистосортный ячмень и измерите у
каждого колоса длину остей, а затем полученный результат представите
графически, то получите колоколообразную кривую. На рис. 12 на оси
ординат указано количество колосьев с определенной длиной остей, а на
оси абсцисс — длина остей. Как видно, преобладает известная средняя
длина остей, а отклонение в ту и другую сторону наблюдается с
определенной час-

_____________________

* И то, что носится в туманных очертаниях, закрепляется в прочных
мыслях. — Гете.

39

тотой. Теперь выберите группу колосьев, обозначенную на рисунке красным,
с остями, заметно превосходящими среднюю длину, но группу достаточно
многочисленную, чтобы при посеве в поле она дала новый урожай.
Проделывая подобный опыт, Дарвин ожидал бы, что для нового урожая кривая
сдвинется вправо. Другими словами, он ожидал бы, что в результате отбора
увеличится число колосьев со средней длиной остей. Однако этого не
случится, если использовать действительно чистосортный ячмень. Новая
статистическая кривая, полученная для отобранного урожая, будет подобна
первой, и то же самое произойдет, если для посева отобрать колосья с
очень короткими остями.

Отбор не дает результата, потому что малые, непрерывные различия не
наследуются. Они, очевидно, не обусловлены строением наследственного
вещества, они случайны. Но около 40 лет назад голландец де Фриз открыл,
что в потомстве даже совершенно чистосортных линий появляется очень
небольшое число особей — скажем, два или три на десятки тысяч — с
небольшими, но скачкообразными изменениями. Выражение скачкообразные
означает в этом случае не то, что изменения очень значительны, а только
факт прерывистости, так как между неизмененными особями и немногими
измененными нет промежуточных форм. Де Фриз назвал это мутацией. Здесь
существенна именно прерывистость. Физику она напоминает квантовую теорию
— там тоже не наблюдается промежуточных ступеней между двумя соседними
энергетическими уровнями атома. Физик был бы склонен мутационную теорию
де Фриза фигурально назвать квантовой теорией биологии. Позже мы увидим,
что это значительно больше, чем фигуральное выражение. Своим
происхождением мутации действительно обязаны “квантовым скачкам” в
генной молекуле. Но квантовой теории было только два года от роду, когда
де Фриз впервые опубликовал свое открытие (в 1902 г.). Не удивительно,
что потребовалась жизнь целого поколения, чтобы установить тесную связь
между ними! 

21. Они действительно размножаются, то есть они полностью наследуются.

Мутации наследуются так же хорошо, как первоначальные неизмененные
признаки. Например, в первом урожае ячменя, рассмотренном выше, могло
оказаться несколько колосьев с размером остей, далеко выходящим за
пределы изменчивости, скажем, совсем без остей (см. рис. 12). Они

40

могли представлять дефризовскую мутацию и стали бы поэтому размножаться,
то есть все их потомки были бы также без остей.

Следовательно, с одной стороны, мутация определенно является изменением
в наследственном багаже и обусловливается каким-то изменением
наследственной субстанции. В самом деле, большинство важных
экспериментов, открывших нам механизм наследственности, состояло в
тщательном анализе потомства, полученного путем скрещивания мутировавших
(а во многих случаях даже множественно мутировавших) индивидуумов с
немутировавшими. С другой стороны, благодаря свойству действительно
передаваться потомкам, мутации служат также подходящим материалом и для
естественного отбора, который может работать над ними и производить
виды, как это описано Дарвином, элиминируя неприспособленных и сохраняя
наиболее приспособленных.

Необходимо только в дарвиновской теории его “небольшие случайные
изменения заменить мутациями (совсем как в квантовой теории “квантовый
переход” заменяет собой “непрерывное изменение энергии”). Во всех других
отношениях в теории Дарвина оказались необходимыми лишь очень небольшие
изменения, во всяком случае, если я правильно понимаю точку зрения,
которой придерживается большинство биологов *.

22. Локализация. Рецессивность и доминантность.

Теперь мы должны рассмотреть некоторые важнейшие факты и представления,
касающиеся мутаций, опять-таки в несколько догматической форме, не
показывая, как эти факты и представления возникли один за другим из
экспериментальных данных.

Мы должны были бы ожидать, что определенная мутация вызывается
изменением в определенной области одной из хромосом. Это так и есть.
Важно констатировать, что

___________________

* Широко обсуждался вопрос о том, не помогает ли естественному отбору
(если не заменяет его) тенденция проявления полезных или выгодных
мутаций. Моя личная точка зрения по этому вопросу не имеет значения. Но
необходимо оговорить, что возможность “направленных мутаций” не
принимается во внимание в дальнейшем изложении. Более того, я не могу
обсуждать взаимодействие генов — “модификаторов” и “полимерных” генов,
каким бы важным ни было это обстоятельство для действительного механизма
отбора и эволюции.

41

это изменение происходит только в одной хромосоме и но возникает
одновременно в соответствующем локусе гомологичной хромосомы.
Схематически это показано на рис. 13, где крестом отмечен мутировавший
локус. Факт, что затронута только одна хромосома, обнаруживается, когда
мутировавшая особь (часто называется мутантом) скрещивается с
немутировавшей. При этом ровно половина потомства обнаруживает мутантный
признак, а половина — нормальный. Это и есть именно то, чего следует
ожидать в результате расхождения у мутанта двух хромосом в мейозе и что
показано весьма схематично на рис. 14. На этом рисунке приведена
родословная, где каждый индивидуум (трех последовательных поколений)
представлен просто парой хромосом. Пожалуйста, учтите, что если бы обе
хромосомы мутанта были изменены, то все дети имели бы одну и ту же
(смешанную) наследственность, отличную от наследственности каждого
родителя.

Но экспериментировать в этой области не так просто, как могло показаться
из сказанного выше. Дело усложняется вторым важным обстоятельством, а
именно тем, что мутации весьма часто бывают скрытыми. Что это значит?

У мутантной особи две “копии шифровального кода” не одинаковы; они
представляют два различных “толкования”, или две “версии”, во всяком
случае в том месте, где про изошла мутация. Может быть, полезно указать
сразу, что хотя это и соблазнительно, но было бы совершенно неверно
рассматривать первоначальную версию как “ортодоксальную”, а мутантную
версию как “еретическую”. Мы должны рассматривать их в принципе как
равноправные, ибо и нормальные признаки в свое время возникли путем
мутаций.

Действительно, признаки мутантного индивидуума, как общее правило,
соответствуют или той, или другой версии, причем эта версия может быть
как нормальной, так и мутантной. Версия, которой следует особь,
называется доминантной, а противоположная — рецессивной; другими
словами, мутация называется доминантной или рецессивной в зависимости от
того, проявляет ли она свой эффект сразу или нет.

Рецессивные мутации более часты, чем доминантные, и бывают весьма
важными, хотя они и не сразу обнаруживаются. Чтобы изменить свойства
организма, они должны присутствовать в обеих хромосомах (рис. 15). Такие
индивидуумы могут быть получены, когда два одинаковых ре-

42

цессивных мутанта скрещиваются между собой или когда мутант скрещивается
сам с собой. Последнее возможно у гермафродитных растений и происходит
самопроизвольно. Простое рассуждение показывает, что в этих случаях
около четверти потомства будет иметь внешность мутанта.

23. Введение некоторых специальных терминов.

Для большей ясности здесь следует объяснить некоторые специальные
термины. То, что я называю версией шифровального кода, будь она
нормальной или мутантной, принято обозначать термином аллель. Когда
версии различны, как это показано на рис. 13, особь называется
гетерозиготной по отношению к этому локусу. Когда они одинаковы, как,
например, у немутировавших особей или в случае, изображенном на рис. 15,
они называются гомозиготными. Таким образом, рецессивные аллели влияют
на признаки только в гомозиготном состоянии, тогда как доминантные
аллели производят один и тот же признак как в гомозиготном, так и в
гетерозиготном состоянии.

Цвет очень часто доминирует над его отсутствием (или белой окраской).
Например, горох будет цвести белыми цветами только тогда, когда он имеет
рецессивный аллель, ответственный за белый цвет в обоих соответствующих
хромосомах, то есть когда он гомозиготен по белому; в этом случае он
будет давать чистое потомство — все его потомки будут белыми. Но уже
один красный аллель (в то время как другой белый — гетерозиготная особь)
сделает цветок красным и совершенно таким же сделают его и два красных
аллеля (гомозиготная особь). Различие последних двух случаев станет
выявляться только в потомстве, когда гетерозиготные красные будут
производить некоторое количество белых потомков, а гомозиготные красные
будут давать чистое потомство.

То, что две особи могут быть совершенно подобными по внешности и,
однако, различаться наследственно, столь важно, что желательно дать
этому точную формулировку. Генетик говорит, что у особей один и тот же
фенотип, но различный генотип. Содержание предыдущих параграфов может
быть, таким образом, суммировано в кратком, но очень специальном
выражении: рецессивный аллель влияет на фенотип, только когда генотип
гомозиготен.

Мы будем прибегать время от времени к этим специальным выражениям,
напоминая читателю их значение, когда это необходимо.

43

24. Вредное действие родственного скрещивания.

Рецессивные мутации, пока они гетерозиготны, не служат, конечно,
материалом для естественного отбора. Если мутации вредны, как это часто
и бывает, они не отбрасываются, потому что скрыты.

Отсюда следует, что очень большое количество неблагоприятных мутаций
может накапливаться и не причинять непосредственного вреда. Но они,
конечно, передаются половине потомства, и это наблюдается как у
человека, так и у животных, особенно домашних, хорошие физические
качества которых имеют для нас большое значение.

На рис. 14 предполагается, что мужской индивидуум (скажем, для
конкретности, я сам) несет такую рецессивную вредную мутацию в
гетерозиготном состоянии, которая не проявляется. Предположим, что моя
жена не имеет ее. Тогда половина наших детей (см. второй ряд) будет
также нести ее, и притом опять в гетерозиготном состоянии, если все они
вступят в брак с немутантными партнерами (на рисунке опущены, чтобы
избежать путаницы), четвертая часть наших внуков в среднем будет нести
эту мутацию.

Никакой опасности вредных проявлений не возникнет до тех пор, пока такие
индивидуумы не переженятся. Тогда, как показывает простой расчет,
четвертая часть лх детей окажется гомозиготной и проявит вредную
мутацию. За исключением самооплодотворения (возможного только у
гермафродитных растений), наибольшую опасность представлял бы брак между
моим сыном и моей дочерью. Каждый из них имеет одинаковые шансы быть в
скрытом виде или затронутым, или не затронутым мутацией, и потому одна
четвертая часть кровосмесительных союзов была бы опасной, поскольку
четвертая часть детей от таких браков проявляла бы вредный признак.
Опасность для каждого отдельного ребенка, рожденного при кровосмешении,
равна, таким образом, 1:16.

Подобные рассуждения показывают, что опасность для потомства в случае
брака моих внуков, которые в то же время являются двоюродными братом и
сестрой, равна 1:64. Это уже не кажется таким страшным, и действительно,
последний случай брака обыкновенно считается терпимым. Но не надо
забывать, что мы анализировали последствия только одного скрытого
повреждения у одного партнера из пары предков (я и моя жена). В
действительности же оба они, весьма возможно, несут в себе более чем

44

2

4

n

p

r

t

ц

ш

\

^

°

І

ґ

¶

r

ґ

„@

„@

]„@

^„@

„@

„@

]„@

^„@

‚

 

„@

„@

]„@

^„@

Iодин скрытый недостаток. Если вы знаете, что носите определенный
скрытый недостаток, то должны предполагать с вероятностью 1:8, что ваши
двоюродные братья и сестры также разделяют его с вами!

Эксперименты с растениями и животными, по-видимому, указывают, что кроме
сравнительно редких серьезных дефектов имеется масса мелких, случайные
комбинации которых ухудшают в целом потомство от родственных
скрещиваний. Поскольку мы более не склонны избавляться от неудачных
потомков тем жестоким путем, каким пользовались спартанцы *, мы должны
обращать весьма серьезное внимание на близкородственные браки у
человека, для которого естественный отбор наиболее приспособленных
ограничен и даже, более того, обращен в свою противоположность.
Антиселективное действие современных массовых убийств здоровых юношей
всех национальностей вряд ли оправдывается соображениями, что в более
первобытных условиях война могла положительно влиять на отбор, давая
возможность выжить наиболее приспособленным племенам. 

25. Общие замечания

Представляется удивительным, что рецессивные аллели в гетерозиготном
состоянии полностью подавляются доминантными и совершенно не производят
видимого действия. Надо, во всяком случае упомянуть, что имеются и
исключения. Когда гомозиготный белый львиный зев скрещивается с
гомозиготным малиновым, все непосредственные потомки оказываются
промежуточными по окраске, то есть розовыми (а не малиновыми, как можно
было ожидать.)

Более важный случай двух аллелей, выявляющих свое действие одновременно,
наблюдается в группах крови, но мы не можем вдаваться здесь в
подробности. Я не был бы удивлен, если бы в конце концов оказалось, что
рецессивность может быть различной степени и что ее обнаружение зависит
от чувствительности приемов, применяемых при изучении фенотипа **.

____________________

* Слабых или уродливых детей сбрасывали со скалы, чтобы избавиться от
слабых и больных потомков—Прим. перев.

** Поиски чувствительных методов выявления рецессивных аллелей в
организме человека представляют одну из важнейших проблем медицинской
генетики. Разработка этих методов позволит выявить скрытые носители
многих заболеваний, наследующиеся по рецессивному типу, что значительно
облегчит борьбу с наследственными болезнями. На этом пути уже достигнуты
первые успехи.—Прим. перев,

45

Здесь, может быть, следует сказать несколько слов об истории генетики.
Открытием законов передачи последующим поколениям признаков, которыми
различались родители, и, в частности, открытием рецессивных и
доминантных признаков мы обязаны всемирно известному августинскому
аббату Грегору Менделю (1822—1884 гг.). Мендель ничего не знал о
мутациях и хромосомах. В своем монастырском саду в Брюнне (Брно) он
выращивал садовый горошек, культивируя различные сорта, скрещивая их и
наблюдая потомство в 1, 2, 3-м... поколениях. Вы можете сказать, что он
экспериментировал с мутантами, найдя их уже готовыми в природе.
Результаты работы он опубликовал в 1866 г. в “Naturforshender Verein in
Brunn”. Никто, казалось, не интересовался занятиями аббата и никто,
конечно, не имел ни малейшего представления о том, что в XX столетии его
открытие станет путеводной звездой совершенно новой науки, возможно,
наиболее интересной в наши дни. Его работа была совершенно забыта, и ее
снова открыли только в 1900 г. одновременно и независимо друг от друга
Корренс, де Фриз и Чермак.

26. Необходимо, чтобы мутации были редким событием.

До сих пор мы обращали внимание на вредные мутации, которые, может быть,
более многочисленны; однако следует отметить, что мы встречаемся и с
полезными мутациями. Если самопроизвольная мутация представляет собой
небольшую ступеньку в развитии вида, то создается впечатление, что это
изменение “испытывается” вслепую, с риском, что оно может оказаться
вредным и в этом случае будет автоматически элиминировано. Отсюда
вытекает один очень важный вывод.

Чтобы быть подходящим материалом для работы естественного отбора,
мутации должны быть достаточно редким событием, какими они в
действительности и оказываются. Если бы мутации были настолько частыми,
что существовала бы большая вероятность появлений у одной особи, скажем,
дюжины различных мутаций, то вредные, как правило, преобладали бы над
полезными, и виды, вместо того чтобы улучшаться путем отбора, оставались
бы неулучшенными или погибали. Сравнительный консерватизм, являющийся
результатом высокой устойчивости генов, имеет очень существенное
значение. Аналогию этому можно усмотреть, например, в работе сложного
оборудования на каком-нибудь заводе. Для улучшения его ра-

46

боты необходимо вводить различные новшества, даже непроверенные ранее.
Но чтобы выяснить, как влияют они на качество продукции, важно вводить
их по одному, оставляя без изменения остальное оборудование.

27. Мутации, вызванные рентгеновскими лучами

Мы теперь должны рассмотреть серию чрезвычайно остроумных генетических
исследований, которые окажутся наиболее существенными для нашего
анализа.

Частоту мутаций в потомстве — так называемый темп мутирования — можно
увеличить во много раз по сравнению с естественным мутационным темпом,
если подвергнуть родителей рентгеновскому или у-облучению. Мутации,
вызванные таким путем, ничем (за исключением большей частоты) не
отличаются от возникающих самопроизвольно, и создается впечатление, что
каждая естественная мутация может быть также вызвана рентгеновскими
лучами.

В обширных культурах Drosophila многие мутации неоднократно повторяются;
они локализуются в хромосоме так, как описано в § 16, и даже получили
специальные названия. Были обнаружены так называемые множественные
аллели, то есть две (или более) различные “версии” или два “чтения” (в
добавление к нормальной, немутировавшей) в том же месте хромосомного
кода. Это означает, что имеются не только два, но три и больше изменений
в данном локусе, причем каждые два из них находятся один к другому в
отношении доминантности — рецессивности, когда они оказываются
одновременно на своих соответствующих местах в двух томологичных
хромосомах *.

Эксперименты с мутациями, вызванными рентгеновскими лучами, создают
впечатление, что каждый отдельный “переход”, скажем, от нормального
индивидуума к мутанту или наоборот, имеет свой индивидуальный
“коэффициент”, характеризующий число потомков, которые оказываются
мутировавшими в данном направлении, если перед зарождением этих потомков
родители получили единичную дозу рентгеновских лучей.

_______________________

* Это не совсем точно. Отмечено, что, за исключением “дикого” (обычного)
аллеломорфа, остальные чаще ведут себя не как доминантные и в сочетании
дают промежуточные формы. — Прим. перев.

47

28. Первый закон. Мутация — единичное событие.

Более того, законы, управляющие частотой проявления индуцированных
мутаций, крайне просты. Я следую здесь классификации Н. В.
Тимофеева-Ресовского [“Biological Reviews” (vol. 9, 1934)]. В
значительной степени она основывается на прекрасной работе этого автора.

Частота мутаций прямо пропорциональна дозе облучения, — гласит первый
закон, — так что можно фактически говорить (как я это и делал) о
коэффициенте увеличения.

Мы так привыкли к прямой пропорциональности, что склонны недооценивать
далеко идущие последствия этого закона. Чтобы оценить их, давайте
вспомним, что стоимость товара, например, не всегда зависит от его
количества. Скажем, вы купили полдюжины апельсинов, лавочник был
обрадован, и, если вы потом решили взять у него дюжину, он, возможно,
отдаст ее вам вдвое дешевле. В неурожайные годы может случиться совсем
обратное.

В нашем случае мы заключаем, что первая доза излучения, вызвав, скажем,
одну мутацию на 1000 потомков, в то же время совсем не повлияла на
остальных потомков ни в сторону предрасположения их к мутациям, ни в
сторону иммунизации против них. В противном случае вторая такая же доза
не вызвала бы снова именно одной мутации на 1000. Мутация, таким
образом, не является накопленным результатом последовательного облучения
в малых дозах, которые усиливали бы одна другую. Мутация — это единичное
явление, происходящее в хромосоме под воздействием рентгеновских лучей.
Что же это за явление? На это отвечает второй закон.

29. Второй закон. Локализапия события

Если вы изменяете качество рентгеновского излучения (длину волны) в
широких пределах от длинноволнового до довольно коротковолнового,
коэффициент остается постоянным при условии, что доза облучения (в
единицах рентген) остается неизменной.

Иначе говоря, коэффициент не изменяется, если вы измеряете дозу числом
ионов, образующихся в единице объема подходящего стандартного вещества в
течение времени, когда родители подвергаются облучению.

В качестве стандартного вещества выбирают воздух не только для удобства,
но и потому, что ткани организмов состоят из элементов того же среднего
атомного веса, как

48

и воздух. Нижний предел числа ионизации или сопровождающих их процессов
* (возбуждений) в тканях получают умножением числа ионизации в воздухе
на отношение их плотностей. Таким образом, совершенно ясно (и это
подтверждают более детальные исследования), что явление, вызывающее
единичную мутацию, и есть как раз ионизация (или какой-то другой
процесс), происходящая внутри некоторого “критического” объема
зародышевой клетки. Каков же этот критический объем? Он может быть
установлен на основе наблюдающейся частоты мутирования путем следующего
рассуждения. Если при дозе 50 000 ионов на 1 см3 вероятность мутации для
каждой отдельной гаметы, находящейся в облучаемом пространстве, равна
1:1000, то критический объем — “мишень”, в которую надо “попасть”
ионизирующей частице, чтобы возникла эта мутация, будет 1/1000 от
1/50000 см3, то есть, иначе говоря, одна пятидесятимиллионная доля
кубического сантиметра. Данные здесь не точны, и я их привел только для
иллюстрации. В действительности при расчете мы следуем М. Дельбрюку
(совместная работа его с Н. В. Тимофеевым-Ресовским и К. Г. Циммером)
**. Эта же работа послужит основным источником при изложении теории в
следующих двух главах. По Дельбрюку этот объем равен почти 10 средним
атомным расстояниям, взятым в кубе, и содержит таким образом только
около 1000 атомов. Простейшее истолкование этого результата сводится к
тому, что имеется достаточная вероятность возникновения данной мутации,
если ионизация (или возбуждение) происходит не далее чем на расстоянии
около 10 атомов от определенного места в хромо соме (более детально мы
это обсудим далее).

В работе Н. В. Тимофеева-Ресовского содержится практический намек, о
котором я не могу здесь не упомянуть, хотя, он конечно, не имеет
отношения к настоящему исследованию. В наши дни у человека много
возможностей подвергнуться облучению рентгеновскими лучами. Опасность их
действия хорошо всем известна. Медицинские сестры и врачи-рентгенологи,
постоянно имеющие дело с рентгеновскими лучами, обеспечиваются
специальной защитой в виде свинцовых ширм, фартуков и т. д. Дело,
однако, в том, что даже при успешном отражении этой неизбежной опас-

_______________________

* Нижний предел, потому что эти другие процессы не учитываются при
измерении ионизации, но могут иметь значение при вызывании мутаций

** Nachr. a. d. Biologie d. Ges. d. Wiss. Goettingen, 1, 189 (1935).

49

ности, грозящей индивидууму, существует косвенная опасность
возникновения небольших вредных мутаций в зачатковых клетках, мутаций
таких же, как и те, с которыми мы встречались, когда речь шла о
неблагоприятных результатах родственного скрещивания. Говоря более ясно,
хотя, возможно, это звучит и немного наивно, опасность брака между
двоюродными братом и сестрой может быть значительно увеличена тем, что
их бабушка в течение долгого времени работала медсестрой в рентгеновском
кабинете. Это не должно быть поводом для беспокойства отдельного
человека. Но всякая возможность постепенного заражения человеческого
рода нежелательными скрытыми мутациями должна интересовать общество *.

_____________________

* Опасности усиления мутационного давления для будущего человечества
вследствие повышения радиационного фона, особенно после создания и
испытания ядерного оружия и использования все большего количества
химических веществ в повседневной жизни, в настоящее время уделяется
большое внимание. Работами советских ученых показано, что нет
генетически безвредной дозы радиации.—Прим. перев. 

50

IV. Данные квантовой механики

Und deines Geistes hoechster Feuerflug Hat shon am Gleichnis, hat am
Bild genug.

Goethe*

30. Постоянство, не объяснимое классической физикой

Таким образом, при помощи удивительно тонкого инструмента, каким
являются рентгеновские лучи (они дали возможность, как помнит физик, 30
лет назад открыть структуру кристаллов), биологам и физикам удалось
увидеть более тонкие структуры, ответственные за определенные
индивидуальные признаки, то есть удалось определить размер генов более
точно, чем методами, описанными в § 17. Мы теперь серьезно стоим перед
вопросом: как можно с точки зрения статистической физики примирить то,
что генная структура, по-видимому, включает в себя только сравнительно
малое число атомов (порядка 1000, а возможно, гораздо меньше) и все же
проявляет весьма регулярную и закономерную активность и такое
постоянство, какое граничит с чудом.

Разрешите мне пояснить примером это действительно удивительное
положение. У нескольких членов габсбургской династии нижняя губа имела
особую форму (“габсбургская губа”). Наследование этого признака было
изучено очень тщательно, и результаты опубликованы Императорской
академией в Вене. Признак оказался настоящим менделевским аллелем по
отношению к нормальной губе. Присмотревшись к портретам членов семьи,
живших в XVI—XIX столетиях, мы можем уверенно заявить, что материальная
генная структура, ответственная за эту ненормальную черту, передавалась
из поколения в поколение в течение столетий и в точности
воспроизводилась в каждом из немногих клеточных делений, которые
происходили в этот период. Более того, число атомов, заключающихся в
соответствующей генной структуре, вероятно, должно быть

__________________

* И пламенный полет твоего духа довольствуется изображениями и
подобиями. — Гете.

51

того же порядка, как и в случаях, проверенных с помощью рентгеновских
лучей. Все это время ген находился при температуре около 36° С. Как
понять, что он остался неизмененным в течение столетий, несмотря на
тенденцию теплового движения к нарушению порядка в структуре?

Физик конца прошлого столетия, основываясь на тех законах природы,
которые он тогда мог объяснить и которые он действительно понимал, не
нашел бы ответа на этот вопрос. Правда, может быть, после короткого
размышления о статистической природе законов, он бы ответил (как мы
увидим, правильно) : этими материальными структурами могут быть только
молекулы. Химия уже имела в то время достаточное представление о
существовании этих ассоциаций атомов и об их иногда очень высокой
стабильности.

Но это знание было чисто эмпирическим. Природа молекул не была понята —
сильные взаимосвязи атомов, сохраняющие форму молекулы, были для всех
полной загадкой. Действительно, ответ оказался бы правильным, но
ценность его несколько ограничена, поскольку загадочная биологическая
устойчивость сводилась к столь же загадочной химической устойчивости.
Любое представление о том, что две особенности, сходные по проявлению,
основаны на одном и том же принципе, всегда ненадежно до тех пор, пока
неизвестен сам принцип.

31. Объяснимо квантовой теорией.

В данном случае ответ на этот вопрос дает квантовая теория. В свете
современных знаний механизм наследственности тесно связан с самой
основой квантовой теории и, даже более того, опирается на нее. Эта
теория была сформулирована Максом Планком в 1900 г. Современная генетика
начинается с “открытия” менделевской работы де Фризом, Корренсом и
Чермаком (1900 г.) и с работы де Фриза о мутациях (1901—1903 гг.). Таким
образом, время рождения двух великих теорий почти совпадает, и не
удивительно, что обе должны были достигнуть определенной степени
зрелости, прежде чем между ними могла возникнуть связь. Для квантовой
теории потребовалось больше четверти века, когда в 1926—1927 гг. В.
Гайтлер и Ф. Лондон сформулировали основные положения квантовой теории
химических связей. Гайтлер-лондоновская теория включает в себя наиболее
тонкие и сложные понятия позднейшей квантовой теории, называемой
квантовой механикой, или волновой механикой. Изложение ее без применения
высшей математики почти невоз-

52

можно или потребовало бы по крайней мере небольшой книги. Но теперь,
когда вся работа уже выполнена, становится возможным установить связь
между квантовыми переходами и мутациями. Это мы и постараемся сделать.

32. Квантовая теория — дискретные состояния — квантовые переходы.

Величайшее открытие квантовой теории — обнаружение дискретности в книге
природы, в контексте которой, с прежней точки зрения, казалось
нелепостью все, кроме непрерывности. В первую очередь это касается
энергии. Тело большого масштаба изменяет свою энергию непрерывно.
Например, начавший качаться маятник постепенно замедляет свое движение
вследствие сопротивления воздуха. Хотя это довольно странно, но
приходится принять, что система атомного порядка ведет себя иначе. Мы
должны признать, что малая система в силу своей собственной природы
может находиться в состояниях, различающихся только дискретными
количествами энергии, которые называются ее энергетическими уровнями.
Переход от одного состояния к другому представляет собой несколько
таинственное явление, обычно называемое квантовым переходом.

Но энергия — не единственная характеристика системы. Возьмем снова наш
маятник — тяжелый шар, который подвешен на шнуре и который может
выполнять различные движения. Его можно заставить качаться с севера на
юг, с востока на запад, или в любом другом направлении, или по кругу,
или по эллипсу. Но если тихонько дуть на шар с помощью мехов, то можно
заставить его постепенно переходить от одного вида движения к другому.

Для систем малого масштаба большинство этих или подобных характеристик
(мы не можем входить в детали) изменяются прерывисто. Они “квантуются”
совершенно так же, как и энергия. Поэтому, если некоторое число атомных
ядер, включая и орбитальные электроны, находятся близко друг к другу и
образуют “систему”, то они уже способны принимать далеко не все те
произвольные конфигурации, какие мы можем себе представить. Их
собственная природа оставляет им для выбора, хотя и весьма
многочисленную, но прерывистую серию “состояний” *. Мы

____________________

* Я принимаю толкование, которое обычно дается в популярных книгах и
которое удовлетворительно и для нашей цели, но я сам всегда осуждаю тех,
кто закрепляет удобную ошибку. Истинная картина значительно сложнее, так
как она включает в себя случайную индетерминантность в отношении
состояния, в котором находится система.

53

обычно называем эти состояния энергетическими уровнями, так как энергия
составляет весьма важную характеристику. Но надо понять, что полное
описание содержит значительно больше характеристик, чем только энергию.
По существу правильнее представлять себе состояние как определенную
конфигурацию всех частиц. Переход из одной конфигурации в другую — это
квантовый “скачок”. Если второй конфигурации соответствует большая
энергия (более высокий уровень), то для перехода системы на этот уровень
она должна извне получить энергию, которая не менее разности энергий,
соответствующих этим состояниям. На более низкий уровень система может
перейти самопроизвольно, испустив избыток энергии в виде излучения. 

33. Молекулы.

Система атомов может находиться в нескольких дискретных состояниях. При
состоянии с наиболее низким энергетическим уровнем ядра могут сблизиться
настолько, что образуется молекула. Следует подчеркнуть, что молекула
обязательно будет иметь определенную устойчивость. Конфигурация ее не
может изменяться по крайней мере до тех пор, пока она извне не получит
такую энергию, которая необходима для “подъема” молекулы на более
высокий энергетический уровень. Таким образом, устойчивость молекулы
количественно оценивается разностью энергии двух конфигураций молекулы,
которая, как мы увидим, является совершенно определенной величиной. Этот
факт тесно связан с самой основой квантовой теории, а именно с
дискретностью схемы энергетических уровней.

Я должен просить читателя принять на веру, что эта система идей была
полностью подтверждена данными химии, и она блестяще оправдала себя при
объяснении валентности и многих других деталей, касающихся структуры
молекул, энергии их связи, их устойчивости при различных температурах и
т. д. Я говорю об известной гайтлер-лондоновской теории, которая, как я
сказал, не может быть изложена здесь детально.

34. Их устойчивость зависит от температуры.

Мы должны ограничиться рассмотрением явления, наиболее интересного с
точки зрения биологии, а именно: проанализировать устойчивость молекул
при разных температурах. Примем для начала, что наша система атомов
действительно находится в наиболее низкоэнергетическом состоянии. Физик
назвал бы ее молекулой при температуре, равной абсолютному нулю. Что-

54

бы поднять молекулу на ближайший более высокий уровень, необходимо
снабдить ее определенным количеством энергии. Проще всего это сделать,
если “нагреть” молекулу. Вы помещаете ее в условия более высокой
температуры (тепловую баню), позволяя таким образом другим системам
(атомам, молекулам) ударяться о нее.

Из-за полной хаотичности теплового движения нельзя точно указать
температуру, при которой непременно и немедленно произойдет “переход”
молекулы в другое состояние. Вернее, при всякой температуре (выше
абсолютного нуля) имеется определенная, большая или меньшая, вероятность
подъема ее на новый уровень, причем эта вероятность, конечно,
увеличивается с повышением температуры. Наилучший способ выразить эту
вероятность — указать среднее время, которое следует выждать, пока
произойдет этот подъем, то есть указать “время ожидания”.

По данным М. Поланьи и Е. Вигнера *, время ожидания зависит
преимущественно от отношения двух энергий. Одна из них — та разность
энергий, которая необходима для подъема молекулы на следующий уровень
(назовем ее W), а другая характеризует интенсивность теплового движения
при данной температуре (обозначим абсолютную температуру буквой Т, а эту
характеристику — kT) **. Понятно, что вероятность подъема молекулы на
новый уровень тем меньше и, значит, время ожидания тем больше, чем выше
сам уровень по сравнению со средней тепловой энергией, иначе говоря, чем
выше отношение W:kT. Самое удивительное это то, что время ожидания
сильно зависит от сравнительно малых изменений отношения W:kT. Например
(по Дельбрюку), для W, которое в 30 раз больше kT, время ожидания будет
всего 0,1 секунды, но оно повышается до 16 месяцев, когда ТУ в 50 раз
больше kT, и до 30 000 лет, когда ТУ в 60 раз больше kT!

35. Математическое отступление

По-видимому, имеет смысл выразить на математическом языке (для тех
читателей, кому это доступно) причину такой огромной чувствительности к
изменениям в уровнях или температуре и сделать несколько физических
замечаний. Причина чувствительности в том, что время ожи-

_______________________

* Zeitschrift fur Physik, Chemie (A), Haber— Band, S. 439, 1928. 

** k — постоянная Больцмана, величина которой известна; 3/2 kT — средняя
кинетическая энергия атома газа при темпераратуре Т.

55

дания, назовем ею t, зависит от отношения W : kT как экспоненциальная
функция, то есть t= ?eW/kT.

При этом ? — некоторая малая константа порядка 10-13 или 10-14 секунды.
Так вот, эта экспоненциальная функция не случайная величина. Она
многократно встречается в статистической теории термодинамики, образуя
как бы ее спинной хребет. Это — мера невероятности того, что количество
энергии, равное W, может случайно скопиться в некоторой определенной
части системы, и именно эта невероятность возрастает так сильно, что
требуется многократное превышение средней энергии kT *.

Действительно, W =30 kT (пример, приведенный выше) — крайне редкий
случай. То, что это не ведет к очень долгому времени ожидания (только
0,1 секунды в нашем примере), объясняется, конечно, малой величиной
множителя ?.

Этот множитель имеет физический смысл. Его величина соответствует
порядку периода колебаний, все время происходящих в системе. Вы могли
бы, вообще говоря, сказать: этот множитель означает, что вероятность
накопления требуемой величины W, хотя и очень мала, повторяется снова и
снова “при каждом колебании”, то есть около 1013 или 1014 раз в течение
каждой секунды.

36. Первое уточнение

Предлагая эти соображения как теорию устойчивости молекул, мы молчаливо
приняли, что квантовый переход, называемый нами подъемом, ведет если не
к полной диссоциации, то, по крайней мере, к существенно иной
конфигурации тех же атомов — к изомерной молекуле, как сказал бы химик,
то есть к молекуле, состоящей из тех же атомов, но связанных в другом
порядке (в приложении к биологии это может быть новый аллель того же
локуса, а квантовый переход будет соответствовать мутации).

Чтобы согласиться с такой интерпретацией, в нашем изложении следует
исправить два момента, которые я намеренно упростил, желая сделать
изложение более понятным. На основании сказанного выше можно было бы
подумать, что только в самом низком энергетическом состоянии группа
атомов образует то, что мы называем молекулой, и даже ближайшее более
высокое состояние уже является чем-то другим. Но это не так. В
действительности за самым низким энергетическим электронным уровнем
следу-

_______________________

* Чтобы преодолеть порог W.— Прим. перев. 

56

ет серия уровней, не связанных с каким-либо заметным изменением
конфигурации в целом, но соответствующих тем незначительным колебаниям
атомов, о которых мы упомянули в § 35. Они (эти колебания) также
“квантуются”, по различие в энергии этих уровней невелико.
Следовательно, удары частиц тепловой бани могут быть достаточными, чтобы
переводить молекулу на эти уровни уже при довольно низкой температуре.
Если молекула представляет собой растянутую структуру, вы можете
представить эти колебания в виде высокочастотных звуковых волн,
пересекающих молекулу, не причиняя ей вреда.

Таким образом, первое уточнение не особенно серьезно. Мы должны
пренебречь “тонкой колебательной структурой” в схеме уровней. Термин
“следующий, более высокий уровень” надо понимать как следующий уровень,
соответствующий известному изменению конфигурации.

37. Второе уточнение

Второе уточнение объяснить значительно труднее потому, что оно касается
некоторых весьма важных, но довольно сложных особенностей схемы
интересующих нас различных уровней. Свободный переход от одного из них к
другому может быть затруднен совершенно независимо от требующейся
дополнительной энергии. В действительности затруднение не исключается
даже при переходе от более высокого к более низкому уровню.

Начнем с эмпирических фактов. Химику известно, что одна и та же группа
атомов при образовании молекул может объединиться более чем одним
способом. Такие молекулы называются изомерными (состоящими из тех же
частей; ???? — ?от же, ?????i — ?асть). Изомерия не исключение, она
является правилом. Чем больше молекула, тем больше возможных изомеров.
На рис. 16 показан один из простейших случаев: каждый из двух изомеров
пропилового спирта состоит из трех атомов углерода С, восьми атомов
водорода H и одного атома кислорода О. Атом кислорода может быть
расположен (вставлен) между любым атомом водорода и соседним атомом
углерода. Но только в двух случаях, показанных на рисунке, образуются
разные вещества. И они действительно разные. Все их физические и
химические свойства четко различаются. Так же различны и их энергии —
они представляют собой “различные уровни”.

Замечателен тот факт, что обе молекулы весьма устойчивы. Обе ведут себя
так, как если бы они были “нижними

57

уровнями”. Самопроизвольных переходов из одного состояния в другое не
происходит.

Причина здесь та, что обе конфигурации не являются соседними. Переход от
одной к другой может происходить только через промежуточные
конфигурации, соответствующие уровням с более высокой энергией, чем у
каждой из этих двух. Говоря грубо, кислород должен быть извлечен из
одного положения и вставлен в другое (новое). По-видимому, не существует
способа сделать это, минуя конфигурации со значительно более высокими
энергетическими уровнями. Это положение можно наглядно изобразить
графически так, как на рис. 17, где цифрами 1 и 2 обозначены два
состояния или два изомера, цифрой 3 — “потенциальный барьер” между ними,
две стрелки показывают подъем, то есть значения энергии, необходимой для
того, чтобы произошел переход от состояния 1 к состоянию 2 или от
состояния 2 к состоянию 1.

Теперь мы можем сделать второе уточнение, сводящееся к тому, что в
применении к биологии нас будут интересовать переходы только такого
изомерного типа. Именно их мы и подразумевали, когда объясняли состояние
устойчивости в § 33—35. Квантовый переход, который мы имели в виду, —
это переход от одной относительно устойчивой молекулярной конфигурации к
другой. Энергия, необходимая для перехода (обозначенная нами W), в
действительности является не разностью энергий уровней, а ступенькой от
исходного уровня до потенциального барьера (см. стрелки на рис. 17).

Переходы без преодоления потенциального барьера между исходным и
конечным состояниями совершенно не представляют интереса и не только
применительно к биологии. Они абсолютно ничего не меняют в химической
устойчивости молекул. Почему? Они не дают продолжительного эффекта и
остаются незамеченными, ибо когда такой переход происходит, за ним почти
немедленно следует возвращение в исходное состояние, поскольку ничто не
препятствует этому.

58

V. Обсуждение и проверка модели Дельбрюка

Sane sicut lux seipsam et tenebras manifestat, sic veritas norma sui et
falsi est.

Spinoza. Ethica. P. II. Prop. 43 *

38. Общая картина строения наследственного вещества

Все изложенное выше дает простой ответ на вопрос о том, способны ли
структуры генов, состоящие из сравнительно немногих атомов, в течение
продолжительного времени противостоять нарушающему порядок воздействию
теплового движения. Предположим, что по своей структуре ген является
гигантской молекулой, которая способна только к дискретным изменениям,
сводящимся к перестановке атомов с образованием изомерной ** молекулы.

Перестановка может коснуться небольшой части гена; возможно огромное
количество таких различных перестановок. Потенциальные барьеры,
разделяющие возможные изомерные конфигурации, должны быть достаточно
высокими (по сравнению со средней тепловой энергией атома), чтобы
сделать переходы редким событием. Эти редкие события мы будем
отождествлять со спонтанными мутациями.

Последующие части этой главы будут посвящены проверке общей картины гена
и мутации (разработанной главным образом немецким физиком М. Дельбрюком)
путем детального сравнения этой картины с генетическими фактами. Однако
сначала мы сделаем некоторые замечания по поводу основ и общего
характера этой теории.

________________________

* Действительно, как свет обнаруживает и самого себя, и окружающую тьму,
так и истина есть мерило и самой себя, и лжи. — Спиноза. Этика, ч. II,
теор. 43.

** Для удобства я продолжаю называть это изомерным перо-ходом, хотя было
бы нелепостью исключать возможность какого-либо обмена с окружающей
средой.

59

39. Уникальность этой картины

Так ли уж было необходимо для решения биологического вопроса
докапываться до глубочайших корней и обосновывать картину квантовой
механикой? Предположение, что ген — это молекула, является сегодня, смею
сказать, общепризнанным фактом. Только немногие биологи, как знакомые,
так и не знакомые с квантовой теорией, не согласились бы с этим. В § 30
мы отважились вложить такое предположение в уста доквантового физика как
единственное обоснованное истолкование наблюдающегося постоянства.
Последующие соображения относительно изомерии, потенциального барьера,
важнейшей роли отношения W:kT в определении вероятности изомерных
переходов — все это можно было великолепно ввести чисто эмпирически или,
во всяком случае, без привлечения квантовой теории. Почему же я так
упорно настаивал на точке зрения квантовой механики, хотя фактически и
не был в состоянии изложить ее ясно в этой маленькой книге?

Квантовая механика представляет собой первое теоретическое построение,
объясняющее на основе исходных принципов все виды объединений атомов,
фактически встречающиеся в природе. Гайтлер-лондоновское представление о
связи составляет единственную в своем роде, своеобразную основу теории,
отнюдь не выдуманную для объяснения химического сродства. Это
представление вытекает само собой чрезвычайно интересным и удивительным
образом, и вынуждают нас к нему совершенно иные соображения.
Оказывается, оно точно соответствует фактам, наблюдаемым в химии, и, как
я сказал, составляет настолько уникальную и притом хорошо понятную
теоретическую основу, что можно с достаточной уверенностью утверждать,
что это представление едва ли будет заменено другим в ходе дальнейшего
развития квантовой теории.

Следовательно, мы можем спокойно признать, что нет другой возможности,
кроме молекулярного представления о наследственном веществе. Если бы
представление Дельбрюка оказалось несостоятельным, нам пришлось бы
отказаться от дальнейших попыток. Это первое положение, которое я хочу
отметить.

40. Некоторые традипионные заблуждения.

Но действительно ли, кроме молекул, нет других устойчивых структур,
состоящих из атомов? Разве например, золотая монета захороненная
несколько тысячелетий назад, не сохраняет изображения, вычеканенного на
ней? Монета состоит из огромного

60

количества атомов, но, конечно, мы не склонны в данном случае
приписывать простое сохранение формы статистике больших чисел.

Это важное замечание применимо и к искусно сформированным
кристаллическим агрегатам, которые встречаются в виде включений в горных
породах, где они сохраняются без изменений в течение нескольких
геологических периодов.

Это приводит нас ко второму положению, которое я хочу объяснить.
Молекулы твердого тела и кристалла по сути ничем друг от друга не
отличаются. В свете современных знаний они совершенно одинаковы. К
сожалению, в школьных учебниках изложение этого вопроса носит
традиционный характер, теперь уже безнадежно устаревший и затрудняющий
понимание действительного положения вещей.

В самом деле, то, что мы учили в школе относительно молекул, не дает
представления о том, что они гораздо более сродни твердому состоянию,
чем жидкому или газообразному. Напротив, нас учили тщательно проводить
различие между физическими превращениями, подобными плавлению или
испарению, в которых все молекулы сохраняются (например, пропиловый
спирт независимо от того, тверд ли он, жидок или газообразен, всегда
состоит из молекул С2Н6О), и химическими изменениями, например сгоранием
спирта

С2Н6О + 3О2 = 2СО2 + 3Н2О,

где молекула спирта и три молекулы кислорода подвергаются перестройке,
образуя две молекулы углекислого газа и три молекулы воды.

Нас учили, что кристаллы образуют трехмерную периодическую решетку. Эта
пространственная решетка иногда может быть расчленена на составляющие ее
ячейки единичных молекул, как, например, в случае спирта и многих Других
органических соединений.

В других кристаллах, например в кристаллах каменной соли (NaCl),
молекулы NaCl не могут быть вычленены, потому что каждый атом натрия
симметрично окружен шестью атомами хлора и наоборот, так что становится
почти условностью попытка рассматривать отдельные пары атомов в качестве
составляющих одну молекулу.

61

Наконец, нас учили, что твердое тело может быть либо кристаллическим,
либо аморфным.

41. Различные состояния материию.

Я, правда, не стал бы говорить, что все эти утверждения и определения
совершенно неверны. Для практических целей они иногда полезны. Но в
отношении истинной структуры материи границы должны быть проведены
совершенно иным образом. Основное различие лежит между двумя строчками
следующей схемы “уравнений”:

Молекула = твердое тело = кристалл;

Газ == жидкость == аморфное тело

Мы должны кратко пояснить эти утверждения. Так называемые аморфные
твердые тела оказываются либо не истинно аморфными, либо не истинно
твердыми. В “аморфных” волокнах древесного угля с помощью рентгеновских
лучей обнаружены рудиментарные структуры кристаллов графита. Таким
образом, древесный уголь оказывается твердым телом, но в то же время и
кристаллом. Если в каком-то теле мы не находим кристаллической
структуры, мы должны рассматривать его как жидкость с очень высокой
вязкостью (внутренним трением). По отсутствию у такого вещества
определенной температуры плавления и скрытой теплоты плавления легко
обнаружить, что оно не является истинно твердым телом. При нагревании
оно постепенно размягчается и без резкого перехода превращается в
жидкость. (Я вспоминаю, что в конце первой мировой войны нам в качестве
заменителя кофе выдавали вещество, похожее на асфальт. Оно было
настолько твердым, что требовалось долото или топорик, чтобы раздробить
его на куски, и тогда обнаруживался глянцевитый разлом. Но с течением
времени это вещество вело себя как жидкость, плотно заполняя нижнюю
часть сосуда, если вы имели неосторожность оставить его там на несколько
дней.)

Непрерывность газообразного и жидкого состояний — хорошо известный факт.
Вы можете превратить в жидкость любой газ без резкого перехода, избрав
путь “в обход” так называемой критической точки. 

42. Различие, которое действительно существенно

Мы разобрали в схеме все, кроме главного, а главное заключается в том,
что мы хотим рассматривать молекулу как твердое тело — кристалл.

Основанием для этого служит то, что атомы, образующие молекулу, будет ли
их много или мало, связаны сила-

62

ми точно такой же природы, как и многочисленные атомы, из которых
построено истинно твердое тело — кристалл.

Молекула, имеющая правильное периодическое расположение составляющих ее
частиц, является кристаллом. Вспомните, что из этого же представления о
правильности мы исходим при объяснении постоянства гена!

В структуре материи действительно важно, связаны ли между собой атомы
гайтлер-лондоновскими силами, определяющими стабильность кристаллической
структуры, или нет. В твердом теле и в молекуле они связаны, в газе,
состоящем из отдельных атомов (например, в парах ртути), нет. В газе,
состоящем из молекул, атомы подобным образом связаны только внутри
каждой молекулы.

43. Апериодическое твердое тело.

Небольшую молекулу можно назвать “зародышем твердого тела”. Исходя из
такого маленького твердого зародыша, очевидно, возможно представить себе
два различных пути построения все больших и больших ассоциаций. Один —
это сравнительно однообразный путь повторения снова и снова одной и той
же структуры в трех направлениях. Так растет кристалл. Если
периодичность установилась, то уже нет определенного предела для размера
такого агрегата. Другой путь — построение все более и более
увеличивающегося агрегата без скучного механизма повторения. Это случай
все более и более сложной органической молекулы, в которой каждый атом,
каждая группа атомов играет индивидуальную роль, не вполне равнозначную
роли других атомов и групп атомов. Мы можем совершенно точно назвать это
образование апериодическим кристаллом или твердым телом и выразить нашу
гипотезу словами: мы полагаем, что гон или, возможно, целая хромосомная
нить * представляет собой апериодическое твердое тело.

44. Разнообразное содержание, сжатое до миниатюрного кода.

Часто задают вопрос, как такая крошечная частичка вещества — ядро
оплодотворенного яйца — может вместить сложный шифровальный код,
включающий в себя все будущее развитие организма? Хорошо упорядоченная
ассоциация атомов, наделенная достаточной устойчивостью для длитель-

____________________

* То, что она отличается высокой гибкостью, не может служить
возражением; такова и тонкая медная проволока.

63

ного сохранения своей упорядоченности, представляется единственно
мыслимой материальной структурой, в которой разнообразие возможных
(“изомерных”) комбинаций достаточно велико, чтобы заключать в себе
сложную систему детерминации в пределах минимального пространства.

Действительно, не надо особенно большого количества атомов в такой
структуре, чтобы обеспечить почти безграничное число возможных
комбинаций. Для примера вспомните об азбуке Морзе. Два различных знала
(точка и тире), расположенные в определенной последовательности и
составляющие группы с числом знаков не более четырех, позволяют
образовать 30 различных букв. Если бы мы к точке и тире добавили бы
третий знак и взяли группы, включающие не более 10 знаков, то могли бы
образовать 29524 различные “буквы”; с пятью знаками и
двадцатипятизначными группами количество “букв” составило бы
372529029846191405.

Можно было бы возразить, что это сравнение неточно, так как азбука Морзе
состоит из различных комбинаций точек и тире (например, • — — и • • —) и
таким образом, служит плохой аналогией изомерии.

Чтобы устранить этот недостаток, выберем из третьего примера только
комбинации, включающие точно 25 знаков и ровно пять знаков каждого
намеченного типа (пять точек, пять тире и т. д.). Грубый подсчет дает
число комбинаций, равное 62 330 000 000 000, где в правой части стоят
нули вместо цифр, которые я не дал себе труда вычислить.

Конечно, в действительности далеко не каждая комбинация группы атомов
будет представлять возможную молекулу; более того, не может быть и речи
о том, чтобы код был выбран произвольно, так как шифровальный код должен
являться одновременно фактором, вызывающим развитие.

Но выбранное в примере количество “атомов” (25) все-таки еще очень мало,
и это лишь простейший случай расположения их в одну линию. Этим мы
хотели проиллюстрировать, что, представив ген в виде молекулы, мы не
можем считать немыслимым точное соответствие миниатюрного шифровального
кода чрезвычайно сложному, специфическому плану развития организма. Мы
не можем также считать немыслимым и содержание в нем факторов,
реализующих этот план.

64

45. Сравнение с фактами: степень устойчивости; прерывистость мутаций.

Теперь, наконец, мы перейдем к сравнению теоретической картины с
биологическими фактами. Может ли эта картина действительно объяснить
наблюдаемую нами высокую степень постоянства? Приемлемы ли пороговые
значения требуемой величины — многократные произведения средней тепловой
энергии kT, находятся ли они в пределах известных из обычной химии? Это
тривиальные вопросы. На них можно ответить утвердительно. Время жизни
молекул любого вещества, которое химик способен выделить при данной
температуре, должно измеряться по крайней мере минутами. (Это еще
сказано мягко; как правило, их время жизни гораздо больше.) Таким
образом, пороговые значения, с которыми сталкивается химик, неизбежно
имеют именно тот порядок величины, который нужен, чтобы объяснить
практически любую степень постоянства, с какой может столкнуться биолог.
Из § 34 мы знаем, что пороговая энергия, величина которой варьирует от 1
до 2 электронвольт, может обеспечить время жизни от долей секунды до
десятков тысяч лет.

Значения отношения W:kT, упомянутые там для примера и равные 30; 50; 60,
обусловливают время жизни 0,1 сек, 16 месяцев, 30000 лет, что при
комнатной температуре соответствует пороговым значениям энергии 0,9;
1,5; 1,8 электронвольт.

Единица измерения энергии “электронвольт” удобна для физика, потому что
она очень наглядна. Например, 1,8 электронвольта означает, что электрон,
ускоряемый разностью потенциалов около 2 вольт, имеет как раз
достаточную энергию, чтобы вызвать ударом переход одной структуры в
другую. (Для сравнения скажу, что батарея карманного фонарика имеет
напряжение 3 вольта.)

Эти сображения делают понятным тот факт, что изомерное изменение
конфигурации в определенной части нашей молекулы, произведенное
случайной флуктуацией колебательной энергии, может действительно быть
достаточно редким событием, чтобы истолковываться как самопроизвольная
мутация. Таким образом, с помощью принципов квантовой механики мы
объясняем наиболее удивительную особенность мутаций — особенность,
впервые привлекшую внимание де Фриза, а именно то, что они оказываются
скачкообразными изменениями, происходящими без промежуточных состояний.

65

46. Устойчивость генов, прошедших естественный отбор.

Установив, что естественная частота мутаций увеличивается под действием
различных видов ионизирующих излучений, можно было бы предполагать, что
эта естественная частота мутаций определяется радиоактивностью почвы и
воздуха, а также интенсивностью космического излучения.

Однако количественное сравнение с результатами действия рентгеновских
лучей показывает, что естественное излучение слишком слабо и может быть
ответственно только за небольшую часть естественной частоты мутационного
процесса.

Если нам приходится объяснять редкие естественные мутации случайными
флуктуациями теплового движения, то мы не должны особенно удивляться,
что Природа сумела провести тонкий выбор пороговых значений энергии,
необходимых, чтобы сделать мутации редкими событиями. Уже раньше мы
пришли к заключению, что частые мутации были бы пагубны для эволюции.
Индивидуумы, получающие путем мутации генные конфигурации недостаточной
устойчивости, имеют мало шансов на то, чтобы их “ультрарадикальное”,
быстро мутирующее потомство просуществовало очень долго. В процессе
естественного отбора вид будет освобождаться от них и, таким образом,
накапливать устойчивые гены.

47. Иногда мутанты менее устойчивы.

У нас, конечно, нет основании ожидать, что мутанты, появляющиеся в
экспериментах по скрещиванию и отбираемые для изучения их потомства, все
будут проявлять такую же высокую стабильность, ибо они еще не были
“испытаны”, а если и были, то в диких популяциях оказались
“отвергнутыми” из-за слишком высокой мутабель-ности. Во всяком случае
нас совсем не удивляет, что некоторые из этих мутантов обнаруживают
более высокую му-табельность, чем нормальные “дикие” гены.

48. Температура влияет на неустойчивые гены меньше, чем на устойчивые 

Это дает нам возможность проверить нашу формулу мутабельности, которая
имеет вид 

t= ?eW/kT.

(Напоминаю, что t — это время ожидания мутации с порогом энергии W.)
Спрашивается, как будет изменяться t в зависимости от температуры. Из
предыдущей формулы с хорошим приближением мы легко находим отношение
значе-

66

ния t при температуре Т+10 к значению t при температуре Т;

 

Поскольку показатель степени в этой формуле отрицателен, отношение,
естественно, оказывается меньше единицы. Время ожидания уменьшается с
повышением температуры, а мутабельность возрастает. Но это можно
проверить и действительно было проверено на мушке Drosophila в пределах
температуры, которую выдерживает это насекомое. Результат был на первый
взгляд удивительным. Низкая мутабельность диких генов отчетливо
возросла, а сравнительно высокая мутабельность, наблюдающаяся у
некоторых уже мутировавших генов, вообще не изменялась или увеличивалась
незначительно. Это как раз то, чего мы ожидаем при сравнении наших двух
формул. Большая величина W:kT, необходимая согласно первой формуле,
чтобы сделать t большим (устойчивый ген), обусловливает малую величину
отношения, вычисляемого по второй формуле, то есть, иначе говоря,
определяет существенное увеличение мутабельности с повышением
температуры (действительное значение отношения лежит приблизительно
между 1/2 и 1/5). Обратные величины (2 и 5) в обычной химической реакции
мы называем коэффициентами Вант-Гоффа.

49. Каким образом рентгеновское излучение вызывает мутацию?

Обратимся теперь к частоте мутаций под влиянием рентгеновского
излучения. На основе экспериментов по крещиванию мы пришли к выводу,
что, во-первых (из прямой зависимости мутационного темпа от дозы),
мутацию вызывает некоторое единичное событие; во-вторых (из
количественных данных и из того факта, что мутационный темп определяется
общей плотностью ионизации и не зависит от длины волны), это единичное
событие должно быть ионизацией или каким-то другим процессом. Чтобы
вызвать специфическую мутацию, этот процесс должен происходить внутри
определенного объема размером около 10 атомных расстояний, взятых в
кубе.

Согласно нашему представлению, энергия для преодоления потенциального
барьера должна быть получена в процессе этого взрывоподобного процесса
ионизации или возбуждения. Я называю его взрывоподобным, потому что

67

энергия, затраченная в одном акте ионизации (точнее, вторичным
электроном, образовавшимся при взаимодействии излучения с веществом),
хорошо известна и сравнительно велика: она равна 30 электронвольтам.

Эта энергия должна превратиться в чрезвычайно усиленное тепловое
движение вокруг точки, где произошел взрыв, и распространиться отсюда в
форме “тепловой волны”, то есть волны интенсивных колебаний атомов. То,
что эта тепловая волна еще способна передать необходимую пороговую
энергию от 1 до 2 электронвольт на средний “радиус действия” — около 10
атомных расстояний, является вполне допустимым, хотя непредубежденный
физик, может быть, и предсказал бы несколько меньший радиус действия.

Во многих случаях результат взрыва приведет не к упорядоченному
изомерному переходу, а к повреждению хромосомы — к повреждению, которое
станет смертельным для организма, если искусным скрещиванием удалить
неповрежденного партнера (соответствующую хромосому второго набора) и
заменить его партнером (хромосомой), о котором известно, что
соответствующий ген у него также вызывает смертельный эффект.
Безусловно, этого надо ожидать, и это действительно наблюдается.

50. Их влияние не зависит от самопроизвольной мутабельности

Другие особенности, если и не могут быть предсказаны на основе
приведенной выше картины, то их все же можно легко понять. Например,
неустойчивый мутант в среднем не обнаруживает более высокого
мутационного темпа под влиянием рентгеновского излучения, чем
устойчивый. Поэтому если при взрыве выделяется энергия, равная 30
электронвольтам, то не имеет большого значения, будет ли требуемая
пороговая энергия немногим больше или немногим меньше, скажем, 1 или 1—3
вольта.

51. Обратимые мутации.

В некоторых случаях переход изучали в том и другом направлении, скажем,
от “дикого” гена к определенному мутантному гену и обратно, от
мутантного к дикому. В этих случаях естественная частота мутаций иногда
почти одра и та же, а иногда весьма различна. На первый взгляд, это
представляется странным, потому что потенциальный барьер, который надо
преодолеть, в обоих случаях, казалось бы, один и тот же. Но, конечно,
такое положение нельзя считать обязательным, потому что потен-

68

циальный барьер должен измеряться от энергетического уровня исходной
конфигурации, а этот уровень может быть различным для дикого и
мутантного генов (см. рис. 17, где цифра 1 характеризует дикий ген, а 2
— мутантный, меньшая устойчивость которого изображается более короткой
стрелкой).

В целом, я думаю, модель Дельбрюка достаточно хорошо выдерживает
проверку, и ее использование в дальнейших рассуждениях вполне оправдано.

69

VI. Упорядоченность, неупорядоченность и энтропия.

Nec corpus mentem ad cogltandum пес mens corpus ad motum, neque ad
quietem пес ad aliquid (si quid est) aliud determinate potest.

Spinoza. Ethica, P. III, Prop. 2 *.

52. Замечательный общий вывод из модели Дельбрюка

Разрешите мне вернуться к последним фразам § 44. Там я пытался
объяснить, что молекулярная теория гена сделала вполне допустимым то,
что миниатюрный код точно соответствует весьма сложному и специфическому
плану развития организма и каким-то образом содержит факторы,
реализующие этот план. Но как он делает это? Как перейти от
предположения к действительному пониманию?

Молекулярная модель Дельбрюка в ее совершенно общей форме не содержит,
видимо, намеков на то, как действует наследственное вещество. И в самом
деле, я не ожидаю, чтобы от физиков в ближайшем будущем могли быть
получены сколько-нибудь подробные сведения. Определенные успехи в
решении этой проблемы уже есть, и, я уверен, что они еще будут, но в
области биохимии, особенно в связи с ее проникновением в область
физиологии и генетики.

Никаких детальных данных о функционировании генного механизма нельзя
извлечь из столь общего описания его структуры, какое дано выше. Это
ясно. И тем не менее, как это ни странно, имеется одно общее
представление, вытекающее из него, и оно-то, признаюсь, было
единственной причиной, побудившей меня написать эту небольшую книгу.

Из общей картины наследственного вещества, нарисованной Дельбрюком,
следует, что деятельность живой ма-

_______________________

* Ни тело не может побуждать душу к мышлению, ни душа не может побуждать
тело ни к движению, ни к покою, ни к чему-либо другому (если только есть
что-нибудь такое). — Спиноза. Этика, ч. III, теор. 2.

70

терии, хотя и основана па законах физики, установленных к настоящему
времени, но, по-видимому, подчиняется до сих пор неизвестным другим
законам физики, которые, однако, как только они будут открыты, должны
составить такую же неотъемлемую часть этой науки, как и первые. 

53. Упорядоченность, основанная на “упорядоченности”

Эта довольно тонкая цепь рассуждений трудна для понимания, и все
последующие страницы посвящены тому, чтобы сделать ее ясной.
Предварительно, грубо, но не совсем неверно она может быть изложена
следующим образом.

В главе I мы указали, что законы физики, как мы их знаем, — это
статистические законы*. Они связаны с естественной тенденцией материи
переходить к неупорядоченности.

Но чтобы примирить высокую устойчивость носителей наследственности с их
малыми размерами и обойти тенденцию к неупорядоченности, нам пришлось
“изобрести” молекулу — необычно большую молекулу, которая стала образцом
высокодифференцированной упорядочности, охраняемой волшебной палочкой
квантовой теории. Законы случайности не умаляются этим “изобретением”,
но изменяется их проявление. Физик хорошо знает, что классические законы
физики заменяются квантовой теорией, особенно при низкой температуре.
Этому имеется много примеров. Жизнь представляется одним из них,
особенно удивительным.

Жизнь — это упорядоченное и закономерное поведение материи, основанное
не только на одной тенденции переходить от упорядоченности к
неупорядоченности, но и частично на существовании упорядоченности,
которая поддерживается все время.

Для физика (и только для него) я надеюсь пояснить свою точку зрения
такими словами: живой организм представляется макроскопической системой,
частично приближающейся в своих проявлениях к чисто механическому (по
контрасту с термодинамическим) поведению, к которому стремятся все
системы, когда температура приближается к абсолютному нулю и
молекулярная неупорядоченность снимается.

______________________

* Такое совершенно общее утверждение о законах физики, возможно,
покажется весьма сомнительным, но причина этого будет объяснена в главе
VII.

71

Но нефизику трудно поверить, что обычные законы физики, которые он
рассматривает как образец нерушимой точности, должны основываться на
статистической тенденции материи переходить к неупорядоченности. Такие
примеры я привел в главе I. Общим принципом здесь является знаменитый
второй закон термодинамики (принцип энтропии) и его столь же знаменитое
статистическое обоснование. В § 54—58 я попытаюсь кратко изложить
принцип энтропии в приложении к основным проявлениям живого организма,
забыв на время все, что известно о хромосомах, наследственности и т. д.

54. Живая материя избегает перехода к равновесию.

Что является характерной особенностью жизни? Когда мы считаем материю
живой? Тогда, когда она продолжает “делать что-либо”, двигаться,
участвовать в обмене веществ с окружающей средой и т. д., — все это в
течение более длительного отрезка времени, чем, по нашим ожиданиям,
могла бы делать неодушевленная материя в подобных условиях. Если неживую
систему изолировать или поместить в однородные условия, всякое движение
обычно очень скоро прекращается в результате различного рода трения;
разность электрических или химических потенциалов выравнивается,
вещества, которые имеют тенденцию образовывать химические соединения,
образуют их, температура выравнивается вследствие теплопроводности.
Затем система в целом угасает, превращается в мертвую инертную массу
материи. Достигается состояние, при котором не происходит никаких
заметных событий. Физик называет это состояние термодинамическим
равновесием, или состоянием максимальной энтропии.

Практически такое состояние обычно достигается весьма быстро.
Теоретически очень часто это состояние еще не истинное равновесие, еще
не действительный максимум энтропии. Окончательное установление
равновесия происходит очень медленно. Оно может потребовать нескольких
часов, лет, столетий... Приведем пример, когда приближение к равновесию
происходит все же достаточно быстро. Если стакан, наполненный чистой
водой, и другой, наполненный подслащенной водой, поместить в
герметически закрытый ящик при достоянной температуре, то сначала как
будто ничего не происходит, возникает впечатление полного равновесия. Но
через день становится заметным, как чистая вода вследствие более
высокого давления ее па-

72

ров постепенно испаряется и конденсируется на поверхности раствора
сахара; последний переливается через край стакана. Только после того как
чистая вода полностью испарится, сахар равномерно распределится по всему
доступному ему объему.

Эти конечные этапы приближения к равновесию никогда не могут быть
приняты за жизнь, и мы можем пренебречь ими. Я упоминаю о них, чтобы
оградить себя от обвинения в неточности.

55. Питание “отрицательной энтропией”

Именно потому, что организм избегает быстрого перехода в инертное
состояние “равновесия”, он и кажется загадочным. Настолько загадочным,
что с древнейших времен человеческая мысль допускала действие в
организме особой, какой-то не физической, а сверхъестественной силы (vis
viva, энтелехия).

Как же живой организм избегает перехода к равновесию? Ответ достаточно
прост: благодаря тому, что он питается, дышит и (в случае растений)
ассимилирует. Для всего этого есть специальный термин — метаболизм.
(Греческое слово ??????????? ?значает обмен.). Обмен чего?
Первоначально, без сомнения, подразумевался обмен веществ (например,
метаболизм, по немецки Stoffwechsel*). Но представляется нелепостью,
чтобы главным был именно обмен веществ. Любой атом азота, кислорода,
серы и т. п. так же хорош, как любой другой атом того же элемента. Что
же достигается их обменом? Одно время наше любопытство удовлетворялось
утверждением, что мы питаемся энергией. В ресторанах некоторых стран вы
могли бы найти карточки-меню, указывающие цену каждого блюда и
содержание в нем энергии (калорий). Нечего и говорить, что это
нелепость, ибо во взрослом организме содержание энергии так же
постоянно, как и содержание материи. Каждая калория, конечно, имеет ту
же ценность, что и любая другая, поэтому нельзя понять, чему может
помочь простой обмен этих калорий.

Что же тогда составляет то драгоценное нечто, содержащееся в нашей пище,
что предохраняет нас от смерти? На это легко ответить. Каждый процесс,
явление, событие (назовите его, как хотите), короче говоря, все, что
происходит в Природе, означает увеличение энтропии в той части
Вселенной, где это имеет место. Так и живой организм

__________________________

* Буквально — обмен веществ. — Прим. перев.

73

непрерывно увеличивает свою энтропию, или, иначе производит
положительную энтропию и, таким образов, приближается к опасному
состоянию максимальной энтропии, представляющему собой смерть. Он может
избежать этого состояния, то есть оставаться живым, только постоянно
извлекая из окружающей его среды отрицательную энтропию, которая
представляет собой нечто весьма положительное, как мы сейчас увидим.
Отрицательная энтропия — это то, чем организм питается. Или, чтобы
выразить это менее парадоксально, существенно в метаболизме то, что
организму удается освобождаться от всей той энтропии, которую он
вынужден производить, пока жив.

56. Что такое энтропия.

Разрешите сначала подчеркнуть, что это не туманное представление или
идея, а измеримая физическая величина, совершенно такая же, как длина
стержня, температура любой точки тела, скрытая теплота плавления данного
кристалла или удельная теплоемкость любого вещества. При температуре
абсолютного нуля (грубо — 273° С) энтропия любого вещества равна нулю.
Если вы будете медленно переводить вещество в любое другое состояние
обратимыми небольшими этапами (даже если при этом вещество изменит свою
физическую или химическую природу, распадется на две или большее число
частей с различными физическими или химическими характеристиками), то
энтропия возрастет на величину, которая определяется делением каждой
малой порции тепла, затрачиваемой во время этой операции, на абсолютную
температуру, при которой это тепло затрачено, а затем суммированием всех
полученных величин. Например, когда вы расплавляете твердое тело,
энтропия возрастает на величину теплоты плавления, деленной на
температуру при точке плавления. Таким образом, вы видите, что единица
измерения энтропии есть калория на градус (совершенно так же, как
калория есть единица измерения тепла или сантиметр есть единица
измерения длины).

57. Статистическое значение энтропии.

Я привел это специальное определение для того, чтобы освободить энтропию
от той атмосферы туманной загадочности, которой ее часто окружают.
Гораздо более важна для нас связь энтропии со статистической концепцией
упорядоченности и неупорядоченности — связь, открытая Больцманом и
Гиббсом на основе данных статистической физики. Она также являет-

74

ся точной количественной связью и ее можно выразить так:

Энтропия = k lg D,

где k — так называемая постоянная Больцмана, равная 3,2983 •10-24
калорий на градус Цельсия; D —количественная мера неупорядоченности
атомов в рассматриваемом теле. Дать точное объяснение величины D в
кратких и неспециальных терминах почти невозможно. Неупорядоченность,
которую она выражает, отчасти заключается в тепловом движении, отчасти в
том, что атомы и молекулы разного сорта смешиваются чисто случайно
вместо того, чтобы быть полностью разделенными, как в недавно
приведенном примере молекулы сахара и воды. Уравнение Больцмана хорошо
иллюстрируется этим примером. Постепенное “распространение” сахара по
всему объему воды увеличивает неупорядоченность D, и поэтому (поскольку
логарифм D возрастает с увеличением D) возрастает и энтропия. Совершенно
ясно, что всякий приток тепла извне увеличивает интенсивность теплового
движения, то есть, иначе, увеличивает D и таким образом повышает
энтропию. Что это именно так и есть, особенно наглядно проявляется
тогда, когда вы расплавляете кристалл. При этом нарушается изящное и
устойчивое расположение атомов или молекул и кристаллическая решетка
превращается в непрерывно меняющееся случайное распределение атомов. 

Изолированная система или система в однородных условиях (для наших
рассуждений ее лучше учитывать как часть рассматриваемой системы)
увеличивает свою энтропию и более или менее быстро приближается к
инертномy состоянию максимальной энтропии. Мы узнаем теперь в этом
основном законе физики естественное стремление материи приближаться к
хаотическому состоянию, если мы не препятствуем этому. 

58. Организация, поддерживаемая извлечением “упорядоченности” окружающей
среды.

Как в терминах статистической теории выразить ту удивительную
способность живого организма, с помощъю которой он задерживает переход к
термодинамическому равновесию (смерти)? Выше мы сказали: “Он питается
отрицательной энтропией”, как бы привлекая на себя ее поток, чтобы
компенсировать этим увеличение энтропии, производимое им в процессе
жизни, и таким образом поддерживать себя на посстоянном и достаточно
низком уровне энтропии.

75

Если D — мера неупорядоченности, то обратную величину 1/D можно
рассматривать как прямую меру упорядоченности. Поскольку логарифм 1/D
есть то же, что и отрицательный логарифм D, мы можем написать уравнение
Больцмана таким образом:

— (Энтропия) = k lg (1/D).

Теперь неуклюжее выражение отрицательная энтропия можно заменить более
изящным: энтропия, взятая с отрицательным знаком, есть сама по себе мера
упорядоченности. Таким образом, средство, при помощи которого организм
поддерживает себя постоянно на достаточно высоком уровне упорядоченности
(равно на достаточно низком уровне энтропии), в действительности состоит
в непрерывном извлечении упорядоченности из окружающей его среды. Это
заключение менее парадоксально, чем кажется на первый взгляд. Скорее,
оно тривиально. В самом деле, у высших животных мы достаточно хорошо
знаем тот вид упорядоченности, которым они питаются, а именно: крайне
хорошо упорядоченное состояние материи в более или менее сложных
органических соединениях служит им пищей. После использования животные
возвращают эти вещества s очень деградированной форме, однако не вполне
деградированной, так как их еще могут употреблять растения. (Для
растений мощным источником “отрицательной энтропии” является, конечно,
солнечный свет.)

76

VII. Основана ли жизнь

на законах физики?

Si un hombre nunca se contradice. sera porque nunca dice nada,

Miguel de Unamuno*

59. Для организма следует ожидать новых законов.

В этой последней главе я хочу показать, что все известное нам о
структуре живой материи заставляет ожидать, что деятельность живого
организма нельзя свести к проявлению обычных законов физики. И не
потому, что имеется какая-нибудь “новая сила” или что-либо еще,
управляющее поведением отдельных атомов внутри живого организма, а
потому, что его структура отличается от всего изученного нами до сих пор
в физической лаборатории. Грубо говоря, инженер, знакомый ранее только с
паросиловыми установками, осмотрев электромотор, будет готов признать,
что ему еще не понятны принципы его работы. Он обнаружит медь, которую
знает по применению в котлах и которую здесь используют в форме
длинной-предлинной проволоки, намотанной на катушки; железо, знакомое
ему по рычагам и паровым цилиндрам, а здесь заполняющее сердцевину
катушки из медной проволоки. Он придет к заключению, что это та же медь
и то же железо, подчиняющееся тем же законам природы, и будет прав. Но
одного различия в конструкции будет недостаточно, чтобы ожидать
совершенно другого принципа работы. Он не станет подозревать, что
электромотор приводится в движение духом, только потому, что его можно
заставить вращаться без котла и пара простым поворотом выключателя.

60 Обзор положения в биологии.

Развертывание событий в жизненном цикле организма обнаруживает
удивительную регулярность и упорядоченность, не имеющих себе равных
среди всего, с чем мы встречаемся в неодушевленных предметах. Организм
кон-

_______________________

* Человек никогда не противоречит себе, если он вообще никогда ничего не
говорит. — Мигуэль де Унамуно.

77

тролируется в высшей степени хорошо упорядоченной группой атомов,
которая составляет только очень незначительную часть общей массы каждой
клетки. Более того, на основании создавшейся у нас точки зрения на
механизм мутаций мы приходим к заключению, что перемещение всего лишь
немногих атомов внутри группы “управляющих атомов” зародышевой клетки
достаточно для того, чтобы вызвать весьма определенное изменение
наследственных признаков большого масштаба.

Это, вероятно, наиболее интересные факты из тех, которые наука открыла в
наши дни. Мы склонны признать их в конце концов не столь уже
невозможными. Удивительная способность организма концентрировать на себе
“поток порядка”, избегая таким образом перехода к атомному хаосу, —
способность “пить упорядоченность” из подходящей среды, по-видимому,
связана с присутствием “апериодических твердых тел” — хромосомных
молекул. Последние, без сомнения, представляют наивысшую степень
упорядоченности среди известных нам ассоциаций атомов (более высокую,
чем у обычных периодических кристаллов) из-за той индивидуальной роли
каждого атома и каждого радикала, которую они здесь играют.

Короче говоря, мы видим, что существующая упорядоченность проявляет
способность поддерживать сама себя и производить упорядоченные явления.
Это звучит достаточно убедительно, хотя, считая это убедительным, мы
несомненно исходим из явлений, опирающихся на активность организмов.
Поэтому может показаться, что получается нечто подобное порочному кругу.

61. Обзор положения в физике.

Как бы то ни было, следует снова и снова подчеркнуть, что для физика
такое положение дел кажется не только невероятным, но и чрезвычайно
волнующим, поскольку оно не имеет прецедента. Вопреки обычным
представлениям, регулярное течение событий, управляемое законами физики,
никогда не бывает следствием одной, хорошо упорядоченной группы атомов
(молекулы), если, конечно, эта группа атомов не повторяется огромное
число раз, как в периодическом кристалле, или как в жидкости, или,
наконец, в газе, которые состоят из большого количества одинаковых
молекул.

Даже когда химик имеет дело с очень сложной молекулой in vitro, он
всегда сталкивается с огромным количеством одинаковых молекул. К ним
приложимы его законы.

78

Он может сказать вам, например, что через минуту после того, как
начнется определенная реакция, половина всех молекул прореагирует, а
через две минуты это же произойдет с тремя четвертями молекул. Но будет
ли определенная молекула (если предположить, что вы можете за ней
проследить) находиться среди тех, которые прореагировали, или среди тех,
которые остались нетронутыми, этого он не предскажет. Это вопрос чистой
случайности.

И это не только теоретическое рассуждение. Иногда мы можем наблюдать
судьбу отдельной маленькой группы атомов или даже единичного атома. Но
всякий раз, когда мы это делаем, мы встречаемся с полной
неупорядоченностью, которая только в среднем из большого числа случаев
приводит к закономерности.

Такие примеры мы рассматривали в главе I. Броуновское движение малой
частицы, взвешенной в жидкости, совершенно беспорядочно. Но если
подобных частиц много, то они своим хаотичным движением дают начало
закономерному процессу диффузии.

Распад единичного радиоактивного атома поддается наблюдению (его
движение вызывает видимые вспышки на флюоресцентном экране). Но если
имеется единичный радиоактивный атом, то вероятный период его жизни
менее определен, чем срок жизни здорового воробья. Действительно, в
отношении этого периода можно сказать только то, что все время, пока
атом существует (а это может продолжаться тысячи лет), вероятность его
распада в следующую секунду, велика она или мала, остается всегда той же
самой. Это очевидное отсутствие индивидуальной определенности тем не
менее подчиняется точному экспоненциальному закону распада большого
количества радиоактивных атомов одного и того же вида.

62. Поразительный контраст.

В биологии мы встречаемся с совершенно иным положением. Единичная группа
атомов, существующая только в одном экземпляре, вызывает закономерные
явления, которые находятся в тесной связи между собой и с окружающей
внешней средой. Я сказал — существующая только в одном экземпляре, ибо в
конце концов мы имеем пример яйца и одноклеточного организма. Это верно,
что на последующих стадиях развития у высших организмов количество этих
экземпляров увеличивается. Но в какой степени? Что-нибудь 1014 у
взрослого млекопитающего, как я себе представляю. Ну и что же! Это
только одна миллионная

79

доля того количества молекул, которое содержится в одпом кубическом
дюйме воздуха. Хотя сравнительно и большие, но все вместе эти группы
атомов образовали бы только крошечную каплю жидкости. И посмотрите,
каким образом они распределяются. Каждая клетка дает приют лишь одной из
них (или двум, если мы будем иметь в виду диплоидию). Поскольку мы знаем
силу этого крошечного центрального аппарата в изолированной клетке, не
напоминают ли они нам отдельные пульты управления, разбросанные по всему
организму и осуществляющие связь между собой благодаря общему для них
коду?

Это, конечно, фантастическое описание, может быть, более подходящее
поэту, чем ученому. Однако не нужно поэтического воображения, надо
только ясно и трезво поразмыслить, чтобы уяснить себе, что здесь мы
встречаемся с явлениями, регулярное и закономерное развертывание которых
определяется “механизмом”, полностью отличающимся от “механизма
вероятности” в физике. Ибо это просто наблюдаемый факт, что в каждой
клетке руководящее начало заключено в единичной группе атомов,
существующей только в одном экземпляре (или иногда в двух), и такой же
факт, что оно управляет событиями, служащими образцом упорядоченности.
Найдем ли мы удивительным или совершенно естественным, что маленькая, но
высокоорганизованная группа атомов способна действовать таким образом,
положение остается одинаково беспрецедентным. Оно характерно только для
живой материи. Физик и химик, исследуя неживую материю, никогда не
встречали феноменов, которые им приходилось бы интерпретировать подобным
образом. Такого случая еще не наблюдали, и поэтому теория не объясняет
его — наша прекрасная статистическая теория, которой мы справедливо
гордились, так как она позволила нам заглянуть за кулисы и увидеть, что
могущественный порядок точных физических законов возникает из атомной и
молекулярной неупорядоченности; теория, открывшая, что наиболее важный,
наиболее общий и всеохватывающий закон возрастания энтропии может быть
понят без специального допущения, ибо энтропия — это сама молекулярная
неупорядоченность. 

63. Два пути возникновения упорядоченности

Упорядоченность, наблюдаемая в развертывании жизненных процессов,
проистекает из различных источников. Оказывается, существуют два
различных “механизма”, которые могут производить упорядоченные явления:

80

статистический механизм, создающий “порядок из беспорядка” и новый
механизм, производящий “порядок из порядка”. Для непредвзятого ума
второй принцип кажется более простым, более вероятным. Без сомнения, так
оно и есть. Именно поэтому физики были горды установлением первого
принципа (порядок из беспорядка), которому фактически следует Природа и
который один дает объяснение огромному множеству природных явлений и, в
первую очередь, их необратимости.

Но мы не можем ожидать, чтобы “законы физики”, основанные на этом
принципе, оказались достаточными для объяснения поведения живой материи,
наиболее удивительные особенности которой, видимо, в значительной
степени основаны на принципе “порядок из порядка”. Вы ведь не станете
ожидать, что два совершенно различных механизма могут обусловить один и
тот же закон, как и не будете ожидать, что ваш ключ от двери обязательно
подойдет к двери вашего соседа.

Нас не должны поэтому обескураживать трудности объяснения жизни с
привлечением обыкновенных законов физики. Ибо это именно то, чего
следует ожидать, исходя из наших знаний о структуре живой материи. Мы
вправе предполагать, что живая материя подчиняется новому типу
физического закона. Или мы должны назвать его нефизическим, чтобы не
сказать: сверхфизическим законом?

64. Новый принцип не чужд физике

Нет. Я не думаю этого. Новый принцип — это подлинно физический закон: на
мои взгляд, он не что иное, как опять-таки принцип квантовой теории. Для
объяснения этого мы должны пойти несколько дальше и ввести уточнение
(чтобы не сказать — улучшение) в наше прежнее утверждение, что все
физические законы основаны на статистике.

Это утверждение, повторяющееся снова и снова, не могло не привести к
противоречию, ибо действительно имеются явления, отличительные
особенности которых явно основаны на принципе “порядок из порядка” и
ничего, кажется, не имеют общего со статистикой или молекулярной
неупорядоченностью.

Солнечная система, движение планет существуют бесконечно давно.
Созвездие, которое мы видим, наблюдали люди, жившие во времена
египетских пирамид. Когда были вычислены даты солнечных затмений,
имевших место много лет назад, то оказалось, что они соответствуют

81

историческим записям, а в некоторых случаях результаты вычислений
послужили основанием для исправления хронологической записи. Эти расчеты
основывались не на статистике, а исключительно на ньютоновском законе
всемирного тяготения.

Движение маятника хорошо отрегулированных часов или любого подобного
механизма, очевидно, также не имеет ничего общего со статистикой. Короче
говоря, все чисто механические явления, по-видимому, явно следуют
принципу “порядок из порядка”. И если мы говорим “механические”, то этот
термин надо понимать в широком смысле. Работа очень распространенного
вида часов, как вы знаете, основана на регулярном приеме электрических
импульсов.

Я помню интересную небольшую работу Макса Планка “Динамический и
статистический тип закона” *. В ней он проводит точно такое же различие,
какое мы здесь назвали “порядком из порядка” и “порядком из беспорядка”.

Цель этой работы показать, как интересный статистический тип закона,
контролирующий события большого масштаба, складывается из динамических
законов, которые, по-видимому, управляют событиями малого масштаба —
взаимодействием единичных атомов и молекул. Последний тип закона
иллюстрируется механическими явлениями большого масштаба, как, например,
движение планет, часов и т. д.

Таким образом, оказывается, что “новый принцип” — принцип “порядок из
порядка”, который мы провозгласили с большой торжественностью в качестве
действительного ключа к пониманию жизни, совсем не нов для физики. Планк
даже восстанавливает его приоритет. Мы, кажется, приближаемся к
смехотворному выводу, будто бы ключ к пониманию жизни заключается в том,
что она имеет чисто механический характер и основана на принципе
“часового механизма” в том смысле, который придает этому выражению
Планк.

Этот вывод не представляется нелепым и, на мой взгляд, не совсем
ошибочен, хотя его и следует принимать с большой осторожностью.

____________________

* Dynamische und statistische Gesetzmaessigkeit.

82

65. Движение часов.

Давайте тщательно проанализируем движение реальных часов. Это не чисто
механический феномен. Чисто механические часы не нуждались бы ни в
пружине, ни в заводе. Раз пущенные в ход, они двигались бы бесконечно.
Реальные часы без пружины останавливаются после нескольких движений
маятника, его механическая энергия превращается в тепло. А это
бесконечно сложный, атомистический процесс. Общее представление о нем,
которое складывается у физика, вынуждает признать, что обратный процесс
также вполне возможен: часы без пружины могут неожиданно начать
двигаться вследствие затраты тепловой энергии своих собственных зубчатых
колес и окружающей среды. В этом случае физик должен был бы сказать:
часы испытывают исключительно интенсивный пароксизм броуновского
движения.

В главе I (§7) мы видели, что с весьма чувствительными крутильными
весами (электрометр или гальванометр) такие явления происходят все
время. Для часов этого бесконечно маловероятно.

Будем ли мы относить движение часов к динамическому или статистическому
типу закономерных явлений (употребляя выражения Планка), зависит от
нашей точки зрения. Называя это движение динамическим, мы обращаем
внимание на его регулярность, которая может быть обеспечена сравнительно
слабой пружиной, преодолевающей незначительные нарушения теплового
движения, которыми мы можем пренебречь. Но если мы вспомним, что без
пружины часы вследствие трения постепенно остановятся, то поймем, что
этот процесс может быть истолкован только как статистическое явление,

Каким бы практически незначительным ни было трение и нагревание в часах,
все же не может быть сомнения, что вторая точка зрения, которая не
пренебрегает ими, более основательна, даже если мы имеем дело с
регулярным движением часов, приводимых в движение пружиной. Ибо не
следует думать, что движение механизма в самом деле полностью исключает
статистическую сторону процесса. Истинная физическая картина не
исключает того, что даже точно идущие часы могут неожиданно повернуть
свое движение вспять и завести свою собственную пружину за счет потери
тепла окружающей средой. Это событие все же немногим менее вероятно, чем
броуновский пароксизм для часов, совсем не имеющих заводного механизма.

83

66. Работа часового механизма в конечном счете имеет статистический
характер

Давайте теперь рассмотрим создавшееся положение. “Простой” случай,
который мы проанализировали, служит типичным примером многих других, по
существу всех, которые на первый взгляд не попадают под действие
всеохватывающего принципа молекулярной статистики. Часы, сделанные из
реальной физической материи (в отличие от воображаемых), не будут
“реальным часовым механизмом”. Элемент случайности может быть более или
менее снижен: вероятность того, что часы неожиданно пойдут и пойдут
совершенно неправильно, может быть бесконечно малой, но в основе она
всегда будет. Трение и тепловое влияние сопровождают даже движение
небесных тел. Так, вращение Земли постепенно замедляется приливным
трением и вместе с этим Луна постепенно удаляется от Земли, чего не
случилось бы, если бы Земля была совершенно твердым вращающимся шаром.

Тем не менее остается фактом, что “реальные часовые механизмы” ясно
проявляют весьма выраженные черты “порядка из порядка”, то есть такие,
которые взволновали бы физика, если бы он столкнулся с ними в организме.
Кажется вероятным, что оба случая в конце концов имеют нечто общее.
Остается рассмотреть, в чем заключается это общее и одновременно
поразительное различие, которое делает организм в конечном счете
беспрецедентным.

67. Принцип Нернста.

Когда же физическая система — любой вид ассоциации атомов — следует
“динамическому закону” (в том значении, которое придавал ему Планк) или
обнаруживает “черты часового механизма”? На этот вопрос квантовая теория
дает краткий ответ: при температуре абсолютного нуля. При приближении к
этой температуре молекулярная неупорядоченность перестает влиять на
физические явления. Это было, между прочим, обнаружено при исследовании
химических реакций в широких температурных границах и при последующей
экстраполяции результатов на фактически недостижимую температуру, равную
абсолютному нулю; это и есть знаменитый термодинамический принцип
Вальтера Нернста, который иногда, и не без основания, называют третьим
законом термодинамики (первый — принцип сохранения энергии, второй —
принцип энтропии).

Квантовая теория дает обоснование эмпирическому закону Нернста и
позволяет определить, как близко дан-

84

ная система должна подойти к абсолютному нулю, чтобы выявить черты
“динамического” поведения. Какая же температура в каждом отдельном
случае практически эквивалентна нулю?

Так вот, не следует думать, что это должна быть всегда очень низкая
температура. Действительно, открытие Нернста было подсказано тем фактом,
что даже при комнатной температуре энтропия играет удивительно
незначительную роль во многих химических реакциях. (Напомню, что
энтропия является прямой мерой молекулярной неупорядоченности, а именно
ее логарифмом.)

68. Маятниковые часы фактически находятся при нулевой температуре.

Для маятниковых часов комнатная температура практически эквивалентна
нулю. Это причина того, что они работают “динамически”. Они будут
продолжать идти, если их охлаждать (конечно, при условии, что удалена
смазка), но остановятся, если их нагревать выше комнатной температуры,
ибо в конце концов они расплавятся. 

69. Сходство между часовым механизмом и организмом.

То, что будет сказано ниже, хотя и кажется весьма тривиальным, но, я
думаю, достигнет цели. Часы способны функционировать “динамически”, так
как они состоят из твердых тел, форма которых удерживается
гайтлер-лондоновскими силами достаточно прочно, чтобы избежать тенденции
теплового движения к нарушению порядка при обычной температуре.

Теперь, я думаю, надо немного слов, чтобы определить сходство между
часовым механизмом и организмом. Оно просто и исключительно сводится к
тому, что в основе последнего лежит твердое тело — апериодический
кристалл, образующий наследственное вещество, не подверженное
воздействию беспорядочного теплового движения.

Но, пожалуйста, не ставьте мне в вину, что я будто бы называю
хромосомные нити “зубцами органической машины”, по крайней мере не
делайте этого без ссылки на те глубокие физические теории, на которых
основано сходство. Потому что, действительно, не нужно большого
красноречия, чтобы напомнить основное различие между ними и оправдать
для биологического случая эпитеты — новый и беспрецедентный.

85

Наиболее поразительными различиями являются, во-первых, своеобразное
распределение “зубцов” в многоклеточном организме (я могу напомнить
несколько поэтическое описание § 62) и, во-вторых, то, что отдельный
зубец — это не грубое человеческое изделие, а прекраснейший шедевр,
когда-либо созданный по милости господней квантовой механики.

86

 

+++