science Георгий Петрович Горшков Строение земного шара

Научно-популярная книга о строении Земли.

ru
Tekel FictionBook Editor Release 2.6 28 September 2011 http://www.infanata.com/science/earth/1146145170-stroenie-zemnogo-shara.html FD336398-E5BC-43E9-BB4F-360A13F9516E 1.0

1.0 — создание файла — Tekel.

Строение земного шара Государственное издательство технико-теоретической литературы Москва 1958 Редактор Д. А. Катренко Техн. редактор Е. А. Ермакова. Корректор С. А. Мозгалевская Сдано в набор 31/I 1958 г. Подписано к печати 6/III 1958 г. Бумага 84х108 1/32. Физ. печ. л. 1,5. Условн. печ. л. 2,46. Уч.-изд. л. 2,52. Тираж 100 000 экз. Т-02258. Цена книги 75 коп. Заказ № 1425. Государственное издательство технико-теоретической литературы. Москва, В-71, Ленинский проспект, 15. Первая Образцовая типография имени А. А. Жданова Московского городского Совнархоза. Москва, Ж-54, Валовая, 28.

Георгий Петрович Горшков

Строение земного шара

Введение

Предположим, что Вы получили многотомное собрание сочинений неизвестного вам писателя. Вы имели возможность прочесть лишь последнюю страницу последнего тома, а перед вами ставится задача рассказать о содержании остальных страниц всех томов. Задача неразрешимая!

Казалось бы, также невозможно судить о том, что находится в глубине Земли, в ее недоступных, невидимых недрах. Ведь шахты, с помощью которых добываются полезные ископаемые, проникают в глубь Земли недалеко — лишь очень редко глубина их превышает километр. Буровые скважины достигают бóльших глубин, но и они лишь в единичных случаях превышают по длине 3–4 километра. Следовательно, непосредственному нашему наблюдению доступна, и то в редких случаях, — всего лишь 1/2000 часть радиуса Земли, т. е. лишь последняя страница из сочинения, в котором 2000 страниц.

Да, в глубь земного шара мы проникаем пока недалеко. Но уже сейчас есть другие, косвенные методы исследования: геофизические наблюдения, геохимические расчеты, астрономические вычисления, физические эксперименты. Изобретая все новые и новые, все более совершенные способы исследования, человек проникает в ранее недоступные области природы и учится читать их историю. Проходит время, и мы видим, как успешно разрешаются самые сложные задачи, которые человек ставил перед собой.

Опираясь на достижения советской науки, мы попытаемся в этой книге в самых кратких чертах рассказать о том, что известно о строении нашей планеты.

1. О происхождении Земли

Естествоиспытатели давно стремятся узнать, как возникла Земля. Те или иные представления о происхождении Земли — это не только вопрос мировоззрения. Это вопрос также и практического значения, так как состав Земли, строение и физическое состояние ее недр непосредственно зависят от того, как она возникла и как развивалась. Чтобы понять все особенности нынешнего строения Земли, нужно знать, каково ее происхождение.

Наука о происхождении Земли, Солнца и звезд называется космогонией. Изучая историю науки, можно видеть, что вопросы космогонии интересовали ученых Древней Греции, Египта, Вавилонии, Китая и других стран еще много веков назад. Однако прежние космогонические представления, по понятным причинам, были мало обоснованными, а порою и просто наивными.

В течение длительного времени наиболее вероятным считалось (впрочем, многими считается еще и сейчас) так называемое «горячее» происхождение Земли (а также и всех других планет солнечной системы и самого Солнца). К числу гипотез, говорящих о «горячем» происхождении Земли, относится широко распространенная в прошлом гипотеза немецкого философа Иммануила Канта, известная под названием «небулярной». Она была опубликована в середине XVIII столетия. Автор ее полагал, что солнечная система, а вместе с ней и наша планета, возникли из раскаленной газовой туманности, вращавшейся вокруг своей оси. Под действием силы тяготения в центре туманности образовалось сгущение, из которого с течением времени образовалось Солнце. Под действием того же тяготения туманность сжималась и размеры ее уменьшались. В результате сжатия скорость вращения туманности росла и, наконец, наступил такой момент, когда центробежная сила на «экваторе» туманности превысила силу притяжения. Тогда от края туманности начали отделяться газовые кольца. Из таких колец образовались планеты, а в их числе и Земля.

Гипотеза Канта для своего времени была значительным шагом вперед по сравнению с религиозными представлениями о происхождении Земли. «Приведя мир в состояние простейшего хаоса, писал Кант, а для развития великого порядка природы не применял никаких других сил, кроме силы притяжения и силы отталкивания, двух сил, одинаково несомненных, одинаково простых и в то же время одинаково начальных и общих. Обе заимствованы из Ньютоновой философии… Мне кажется, здесь можно было бы, рассуждая здраво, сказать без всякой дерзости: дайте мне материю, я построю из нее мир». Гипотеза Канта была материалистической по своему духу, и в том заключалась ее особая ценность: «…в открытии Канта, — говорил Ф. Энгельс, — заключалась отправная точка всего дальнейшего движения вперед»[1]).

В дальнейшем выяснилось, что гипотеза Канта (а также и близкая к ней гипотеза Лапласа) не может объяснить многих важных особенностей солнечной системы. Возьмите, например, такой факт: Солнце вращается очень медленно; один оборот оно совершает приблизительно за 26 земных суток. Если бы первоначальная туманность вращалась так же медленно, то центробежная сила на краю туманности была бы слишком мала, чтобы начали отделяться кольца. Расчеты показывают, что отделение колец может осуществиться лишь в том случае, если скорость вращения туманности будет в сотни раз превышать нынешнюю скорость вращения Солнца. Не может небулярная гипотеза достаточно удовлетворительно объяснить и того, как из раскаленных газовых колец получаются сгустки — «зародыши» будущих планет.

В течение некоторого времени большой популярностью пользовалась также гипотеза Джинса. Этот британский астрофизик полагал, что когда-то, очень давно, когда Солнце, простая обычная звезда, было одиноким и еще не обладало планетами, оно встретилось с другой звездой. Пройдя близко от Солнца, встречная звезда «вырвала» из него, силою своего притяжения, струю материи, далеко выплеснувшуюся наружу. Звезда ушла, а всплеск с поверхности Солнца, рожденный встречей, распался на ряд отдельных сгустков, из которых в дальнейшем образовались планеты.

Гипотеза Джинса также оказалась несостоятельной. Расчеты показывают, что большая часть «струи» должна упасть обратно на Солнце или же улететь в мировое пространство, а оставшиеся сгустки будут обращаться вокруг Солнца по очень вытянутым орбитам вблизи от Солнца. На самом же деле планеты обладают почти круговыми орбитами и находятся на далеких расстояниях от Солнца.

Заметим, что встреча звезд в мировом пространстве — событие исключительно редкое; следовательно, если принять предложение Джинса, то и планетная система должна считаться исключительным явлением в мире. Неудивительно, что гипотеза Джинса устраивала сторонников религиозных взглядов, которые увидели в ней подтверждение церковных догм об исключительности и даже единственности Земли во вселенной, что совершенно не отвечает действительности.

Но существуют и другие гипотезы, которые говорят не о «горячем», а о «холодном» происхождении Земли. К ним относятся, например, гипотезы американского астронома Уиппла, немецкого астронома Вайцзекера и советского ученого О. Ю. Шмидта.

Согласно гипотезе О. Ю. Шмидта, Солнце в своем движении по путям вселенной когда-то встретило огромное облако темной, холодной, несветящейся газово-пылевой материи; подобные облака рассеянной материи действительно известны в нашей звездной системе — Галактике. Часть газово-пылевой массы в результате притяжения была поглощена Солнцем. Другая часть постепенно собиралась в сгущения — «зародыши» будущих планет; «зародыши» поглощали пыль и газ, рассеянные вокруг Солнца, и увеличивались в размерах. Как частицы пыли, так и маленькие «зародыши», двигавшиеся в различных направлениях и с различными скоростями, сталкиваясь, приобретали некоторую общую скорость и в конечном итоге стали вращаться вокруг Солнца приблизительно в одной плоскости, близкой к плоскости экватора самого Солнца. Наиболее крупные и быстро растущие «зародыши» превратились в планеты. Пыль и мелкие тела, которые не вошли в состав планет, сохранились в солнечной системе и мы можем наблюдать их в форме метеоров («падающих звезд») и выпадающих на Землю из межпланетного пространства железных и каменных масс — метеоритов.

Многие геологи и геофизики поддерживают идею о «холодном» происхождении Земли. Еще В. И. Вернадский, авторитетнейший геолог и геохимик нашей страны, писал (в 1900 г.): «Все представления о некогда существовавшем огненно-жидком состоянии планет…, внесены в науку в связи с чуждыми ей, по существу, теологическими, философскими и космогоническими представлениями о мире, не поддерживаемыми известными сейчас научными фактами»[2]).

Трудно сказать, какая из этих двух групп гипотез окажется в конечном итоге справедливой. Окончательного решения этой труднейшей проблемы естествознания еще нет. Но современная космогония развивается быстрыми темпами. Много важных наблюдений и расчетов выполнено в Советском Союзе. Интересные идеи предложены советскими астрономами — В. Г. Фесенковым, В. А. Амбарцумяном и многими другими. Нет сомнения в том, что вскоре мы приблизимся к разрешению задачи о происхождении Земли.

2. Возраст Земли

С вопросом о происхождении Земли связан и другой вопрос. Сколько лет Земле? Попытаемся подойти к ответу на этот вопрос различными путями, используя данные геологии, палеонтологии, геохимии.

Геологи отвечают на этот вопрос, изучая процессы накопления осадков, процессы образования осадочных пород.

Представьте себе, что мы стоим у подножия крутого обрыва и рассматриваем породы, открывшиеся нашему взгляду в стенке обрыва. Мы видим песок, глину, известняк, которые залегают в форме горизонтальных слоев различной толщины. Исследуя эти породы, можно выяснить их происхождение, установить, где и как они образовались — в море или на суше, и сколько приблизительно лет потребовалось, чтобы данный слой накопился. Осадочные породы чрезвычайно разнообразны по своему составу, по условиям образования и т. д., но одно будет бесспорным всегда: нижние слои старше, верхние — моложе. Если составить сводную колонку отложений на всю их глубину, то можно судить об относительном возрасте пород. Подчеркнем, именно относительном возрасте, ибо точных сведений о длительности времени, в течение которого слои накапливались, из таких наблюдений мы не извлечем.

Чтобы значительно уточнить выводы, следует обратиться к палеонтологии, науке об ископаемых остатках организмов. Давно установлено, что каждому периоду в истории Земли соответствует свой комплекс животных и растительных организмов. Остатки этих организмов дошли до нас в виде окаменелостей, переполняющих нередко соответствующие пласты горных пород. Так, примитивные кишечнополостные, так называемые граптолиты, существовали на Земле лишь короткое время, которое носит наименование силурийской период, и ни раньше того, ни позже не встречаются. Другой вид организмов, так называемые нуммулиты, известен только для времени, называемого эоценом; в другие моменты истории Земли они не существовали. Следовательно, изучение ископаемой фауны и флоры позволяет сопоставлять между собою породы различных мест земного шара и с достоверностью восстанавливать историю Земли, историю жизни на Земле.

Палеонтологи, так же как и геологи, не могут определить возраст осадочных пород в абсолютных цифрах, т. е. в годах. Конечно, можно попытаться подсчитать, сколько лет требуется для того, чтобы образовался слой осадка определенной толщины, вычислить промежутки времени, необходимые для того, чтобы одна фауна сменила другую. Но точных цифр мы все же не получим, и приходится опираться лишь на сведения об относительном возрасте пород. В этом отношении сделано очень много и геологи с успехом пользуются своей относительной шкалой геологического времени.

Вся история Земли делится на эры, эры делятся на периоды, а периоды — на эпохи и века[3]). Эта схема относительного геологического возраста необходима для проведения работ по геологической съемке и поискам полезных ископаемых. Приведем таблицу деления истории Земли на эры и периоды (без подразделения на эпохи и века):

Рассмотрим в качестве иллюстрации к этой схеме колонку отложений Подмосковья (рис. 1).

В основании холмов и долин Подмосковья залегают прочные светлые известняки. Кое-где по долинам рек эти известняки выходят на поверхность, например, в с. Мячкове на Москве-реке, или вскрываются при разработке карьеров, например у г. Подольска. По заключенным в них остаткам организмов нетрудно определить, что эти известняки, представлявшие первоначально скопление известкового ила и ракушек, отлагались в море и относятся по возрасту к каменноугольному периоду. Заметим, что осадки, соответствующие какому-либо периоду, называются системой (см. рис. 1).

Рис. 1. Геологический профиль в окрестностях Москвы.

Над известняками залегают черные, вязкие глины с окаменевшими стволами деревьев, с многочисленными, хорошо сохранившимися раковинами морских моллюсков — белемнитов и аммонитов. Эти глины также отлагались в море, но уже позже — в юрский период. Заглянув на таблицу, мы можем видеть, что между каменно-угольным и юрским периодом заключены еще пермский и триасовый, но отложений, относящихся к пермскому и триасовому периодам, под Москвой не обнаружено. Следовательно, в то время на месте Москвы моря не было, никаких осадков не отлагалось, а наоборот, была суша и она размывалась древними пермскими и триасовыми реками.

Отложения следующего периода, мелового, широко известны в окрестностях Москвы: это светлые, кварцевые пески, залегающие, например, в основании Ленинских гор или Татаровских высот. Осадков третичного периода под Москвой нет.

Отложения антропогенового периода, самые молодые, в Подмосковье встречаются повсеместно: это пески и галечники современных рек, пески и глины с валунами, оставленными древними ледниками и т. п.

Так схема относительного геологического возраста помогает исследовать отложения осадочных пород далекого прошлого. Но в некоторых случаях, например, при рассмотрении многих проблем теоретической геологии, все же важно знать абсолютный возраст пород, абсолютную длительность геологического времени. Способы определения абсолютного возраста горных пород были предложены физиками и геохимиками.

В горных породах всегда содержится хотя бы самое ничтожное количество радиоактивных элементов, т. е. таких элементов, которые с течением времени самопроизвольно распадаются, превращаясь в другие элементы. Например, радиоактивные элементы уран и торий превращаются в конечном итоге в свинец и гелий. Процесс распада идет самопроизвольно и на него не влияют никакие внешние условия (в естественной обстановке). Длительность процесса распада обычно очень велика. Например, половина всех бывших в какой-то начальный момент атомов тория распадается в течение 13 миллиардов 860 миллионов лет, а половина всех атомов урана распадается за 700 миллионов лет. Другими словами, если в какой-то начальный момент этих элементов было по одному килограмму, то через соответствующее указанное выше количество лет их останется только по 0,5 кг.

При тщательном и весьма тонком анализе состава горной породы можно установить, сколько в ней, уже после момента ее образования, появилось атомов свинца или гелия и сколько осталось еще неразложившегося радиоактивного элемента. По этим данным вычисляется возраст исследуемой горной породы.

Подобные расчеты позволили построить абсолютную шкалу геологической хронологии. Можно считать установленным довольно достоверно, что от начала археозойской эры до наших дней прошло около 2 миллиардов лет, от начала протерозойской эры — около 900 миллионов лет, от начала кембрийского периода — 500, от начала триасового периода — 185, от начала третичного периода — 70, от начала антропогенового периода — 1 миллион лет и т. д.

Таким образом, древнейшие горные породы, относящиеся к археозойской эре, существуют на Земле около 2 миллиардов лет. Однако Земля как планета должна быть еще древнее. Вычисления, в основу которых положен тот же радиоактивный метод, показывают, что Земля возникла 3–6 миллиардов лет назад. Заметим здесь, кстати, что возраст Солнца определяется в 50 биллионов лет, а общее время существования и эволюции средней звезды, в том числе и Солнца, более 2 тысяч биллионов лет.

Такие длительные периоды времени представить себе с достаточной ясностью человек не может. Можно лишь обратиться к некоторым сравнениям.

Допустим, что срок существования Земли как планеты, т. е. 6 миллиардов лет, выражается отрезком в 250 метров, что соответствует высоте нового здания Московского университета на Ленинских горах. Тогда палеозойская эра выразится отрезком длиною около 20 м, а антропогеновый период, т. е. период, в начале которого появился на Земле человек, будет равен всего четырем сантиметрам. Историческое время займет тогда не более 0,1 мм: это чуть больше толщины человеческого волоса (рис. 2).

Рис. 2. Сколько лет Земле.

Как видите, кое-что зная о последних 0,1 мм нашей шкалы, геологи и геофизики решаются судить об остальном отрезке длиною до 1/4 километра. Да, и уверены в своих заключениях, ибо такова сила науки!

3. Форма и размеры Земли

Вряд ли нужно много писать о форме Земли. Всем ясно, что Земля представляет собой шар, слегка сплюснутый у полюсов, т. е. так называемый эллипсоид. Однако правильное, современное представление о форме и размерах Земли было достигнуто далеко не сразу и достигалось порою в тяжелой борьбе науки с религией.

Греческий поэт Гомер (IX–VIII в. до н. э.) изображал Землю в виде круга, схваченного со всех сторон рекой Океаном, «которая катит свои могучие воды по ободу богатого щита»; такое изображение Земли было выгравировано, якобы, на щите мифического героя Ахиллеса. Философ Фалес (VI в. до н. э.) полагал, что Земля — шар, а его ученик Анаксимандр изображал Землю в виде цилиндра. Другие философы и ученые Древней Греции представляли Землю то в виде куба, то в виде лодки и т. д.; ученики Ксенофонта и Анаксимена считали, что Земля — очень высокая гора. Греческая мифология содержит легенду о том, как Зевс, желая определить размеры Земли, выпустил одновременно двух орлов, одного на запад, другого на восток: они встретились в городе Дельфах; это называлось «обнаружение Земли путем слета двух орлов».

На протяжении ряда веков, через дебри схоластики и религии средневековья, пробивала себе путь истина.

Еще совсем недавно, в 1862 г., немецкий ученый П. Иоселиани, определяя «глубину толстоты земного шара», получил 4536,8 км, что в 11/2 раза меньше действительной величины. Трудно поверить, но еще в 1876 г. в Петербурге была издана брошюра под названием: «Земля неподвижна, популярная лекция, доказывающая, что земной шар не вращается ни около оси, ни около Солнца. Читана в Берлине, доктором Шепфером. Перевод с немецкого Н. Соловьева. Издание 2-е, исправленное». Мы не будем останавливаться на подобных заблуждениях, и не будем касаться истории вопроса. Рассмотрим сведения, более существенные для нас в данном случае.

В 1841 г. немецкий астроном Ф. Бессель, используя градусные измерения, вычислил радиус Земли и ее сжатие у полюсов, т. е. получил цифры, характеризующие основные элементы земного эллипсоида. Результат был настолько точным, что эти цифры использовались при различных геодезических исследованиях, в картографии и т. п. в течение 100 лет.

Однако за последние десятилетия накопился огромный материал; появилась возможность уточнить прежние данные о форме и размерах Земли. К тридцатым годам была выполнена работа по пересмотру всех новых данных, и в 1936 г. советский ученый Ф. Н. Красовский опубликовал новые цифры, характеризующие размеры земного эллипсоида еще точнее.

Эллипсоид Ф. Н. Красовского имеет следующие размеры (рис. 3): большая полуось, т. е. расстояние от центра Земли до экватора, равна 6 378 254 метрам; малая полуось, т. е расстояние от центра Земли до одного из полюсов равна 6 356 863 метрам. Таким образом полярный радиус (от центра к полюсу) короче экваториального радиуса (от центра к экватору) приблизительно на 21 км. Отсюда следует, что Земля действительно эллипсоид вращения, т. е. шар, сплюснутый, хотя и очень незначительно, у полюсов. Величина сжатия, вызванного вращением Земли вокруг своей оси, равна 1 : 298,3. На школьном глобусе разница в длине экваториального и полярного диаметров равна всего лишь 0,5 мм, т. е. практически незаметна.

Итак, в первом, и достаточно хорошем, приближении Земля должна быть принята за эллипсоид вращения, элементы которого опубликованы в 1936 г. и которые приняты в Советском Союзе в качестве официальных, т. е. обязательных для использования во всех специальных работах.

Рис. 3. Земля — эллипсоид вращения;

а — большая полуось; с — малая полуось.

Однако геодезисты нередко нуждаются в измерениях еще большей точности, и тогда для изображения формы Земли они пользуются не эллипсоидом, а другой фигурой, так называемым геоидом. Геоид несколько ближе к истинной фигуре Земли, со всеми ее возвышенностями и впадинами, чем эллипсоид, и представляет фигуру, весьма сложную по виду. Наконец, теперь выяснено, что и экватор Земли не является окружностью; скорее это эллипс, т. е. окружность, слегка сжатая. Приходится считать также, что северное и южное полушария, как показал русский ученый А. А. Иванов, не вполне симметричны относительно плоскости экватора.

В заключение приведем некоторые цифры, характеризующие размеры земного шара:

Экваториальный диаметр = 12 756,5 километра

Полярный диаметр = 12 713,7 километра

Длина окружности меридиана = 40 008,6 километра

Длина окружности экватора = 40 075,7 километра

Поверхность Земли = 510 миллионам квадратных километров

Объем Земли = 1080 миллиардам кубических километров

4. Строение Земли

Мы подходим к проблеме строения земного шара. И сразу же возникает вопрос: каким же методом, каким образом можно получить хотя бы какие-нибудь сведения о строении далеких глубин нашей планеты?

К счастью, положение оказывается совсем не безнадежным. Геофизика дает в наши руки даже не один, а несколько методов; они дополняют, поправляют друг друга, и в результате получаются довольно достоверные сведения о строении земного шара и состоянии вещества на больших глубинах.

Прежде всего, конечно, метод сейсмический.

Представим себе, что где-то произошло сильное землетрясение. Очаг землетрясения, т. е. тот участок в толще Земли, в котором возникло землетрясение, располагается обычно на глубине нескольких десятков километров ниже поверхности Земли. Отсюда во все стороны разбегаются упругие волны, которые, дойдя до поверхности, и производят эффект землетрясения. Непосредственно над очагом эти упругие волны выражаются в сильных, резких, коротких ударах; вдали от очага они дают впечатление продолжительных волнообразных колебаний.

Прежде всего отметим, что сейсмические волны, возникшие в очаге землетрясения, расходятся по толще Земли самыми различными путями, и есть возможность с помощью приборов (сейсмографов, которые записывают колебания почвы) проследить за этими путями, выяснить, где, на какой глубине и с какой скоростью проходят волны, и тем самым судить не только о строении глубин, но и о свойствах вещества, залегающего на пути прохождения волн. Кроме того, различается несколько видов таких волн, причем волны различных типов движутся с различными скоростями; это опять дает в руки геофизикам ключ, с помощью которого можно открыть не только местонахождение очага землетрясения, но и свойства вещества на больших глубинах.

Быстрее всех распространяются так называемые продольные волны. Они обозначаются буквой Р. Скорость их колеблется, в зависимости от свойств горных пород, по которым они проходят, от 5 до 13 километров в секунду. В физическом смысле эти волны представляют собой волны сжатия и разрежения. Это значит, что они выражаются в таком движении частиц Земли (вокруг некоторого положения равновесия), в результате которого последние то сближаются друг с другом, то расходятся, т. е. вещество то сжимается, то растягивается. При этом частицы колеблются вдоль «сейсмического луча», т. е. в направлении движения волн, идущих от очага во все стороны. Подобный процесс можно представить себе как реакцию среды на изменение объема.

Примером продольных волн являются звуковые волны, которые в воздухе распространяются со скоростью около 330 метров в секунду, в воде — около 1,5 километра в секунду, а в твердых горных породах, распространенных на Земле — до 5–7 километров в секунду (собственно землетрясение).

Другой класс волн именуется волнами поперечными. Они выражаются в том, что частицы Земли испытывают колебания в направлении, поперечном к направлению движения фронта волны. Эти волны обозначаются значком S и скорость их меньше продольных приблизительно в 1,7 раза. Поперечные волны можно представить себе, как реакцию среды на изменение формы. Жидкости не сопротивляются изменению их формы, и потому поперечные волны через них не проходят, погашаясь в толще жидкой среды на первых же своих «шагах».

Наконец, выделяется еще третий тип волн — поверхностных, которые возникают у свободной поверхности Земли и быстро гаснут с глубиной. В известной степени они напоминают собой те волны, которые возбуждаются на поверхности воды брошенным в воду камнем. Эти волны распространяются медленнее других, и амплитуда их по мере удаления от места возникновения (над очагом) быстро падает; однако при сильных землетрясениях они, так же как и волны других типов, могут причинять серьезные повреждения постройкам.

Представьте себе теперь такую схему (рис. 4). Пусть в точке О находится очаг землетрясения; он лежит в слое горных пород, по которым волны Р (продольные) распространяются со скоростью v1. Под этим слоем залегает другой, в котором скорость упругих колебаний равна v2, причем v2 больше, чем v1.

В точку T1, где, допустим, установлен первый сейсмограф, сначала придут волны Р1, следовавшие по прямому пути ОТ1, а затем волны Р2, которые шли по сложному пути ОАВТ1 с тем, что часть пути, именно АВ, они шли по нижнему слою, т. е. с большой скоростью (v2). Дальше от очага можно найти такой пункт Т2, в который и те и другие волны придут одновременно; путь ОТ2 короче, но зато на пути ОАСТ2 волны долгое время шли с большой скоростью (со скоростью v2 на пути АС). И, наконец, в точку Т3 сначала придут уже те волны Р2, которые шли по нижнему слою, по пути OADT3, а затем уже Р1, которые шли прямо, по пути ОT3; он короче, но скорость волн P1 здесь невелика (v1).

Рис. 4. Пути сейсмических волн, идущих от очага О к точкам T1, T2, T3, в которых установлены сейсмографы. В верхней части рисунка изображены упрощенные сейсмограммы, т. е. отметки, полученные на приборах, о приходе волн Р.

Вот, собственно, и все. Если во всех трех пунктах Т1 Т2 и T3 находятся сейсмографы, которые записали приведшие к ним колебания, то в нашем распоряжении окажутся три ленты с записью колебаний, три сейсмограммы, подобные изображенным на рис. 4; остается лишь внимательно изучить их, выяснить, когда пришли к сейсмографам те или иные волны, и отсюда, путем не слишком сложных вычислений, определить глубину залегания нижнего слоя.

Конечно, в действительности картина гораздо сложнее. В Земле не два слоя, а бесконечное множество их. Слои горизонтальны лишь в редких случаях, чаще они измяты и наклонены. Наконец, от очага распространяются волны не только продольные, но, как мы видели, и поперечные, а на поверхности к ним присоединяются еще и поверхностные. Все это приводит к тому, что сейсмограмма оказывается очень сложной (рис. 5).

Рис. 5. Сейсмограмма, т. е. запись землетрясения, полученная с помощью сейсмографа.

Тем не менее, в ней все же можно разобраться; при сильных землетрясениях, колебания от которых обходят весь земной шар и пронизывают его центр, с помощью сейсмического луча можно как бы прощупать всю Землю и обнаружить те слои или оболочки, из которых она состоит. При этом в качестве источника упругих колебаний можно использовать не только естественные землетрясения, но и искусственные взрывы.

Не рассматривая других методов исследования, перейдем к рассмотрению результатов.

Выше всех залегает, как правило, слой осадочных пород. Осадочные породы чрезвычайно разнообразны, их состав меняется от места к месту, мощность также, а пласты, состоящие из осадочных пород, подчас сильно измяты, наклонены и разорваны. Все же можно говорить о наличии осадочной оболочки, толщина которой будет меняться от нуля до нескольких километров. Осадочная оболочка несет на себе следы всех геологических перемен, испытанных Землею за длительное время, от начала палеозойской эры и до наших дней; она, в сущности, есть продукт этих перемен, продукт бесконечно сложных и постоянно текущих геологических процессов, затрагивающих как внутренние части земного шара, так и его поверхность, включая атмосферу и гидросферу. Осадочная оболочка — один из основных объектов внимания геологов. Осадочных пород нет, или почти нет, лишь там, где они смыты в результате деятельности проточных вод, ветра, ледников, например, на территории Финляндии, Карелии, Кольского полуострова. Таким образом, осадочная оболочка не покрывает всю Землю сплошь, но все же большую ее часть.

Дальше, ниже, следует гранитная оболочка. Дело в том, что сейсмические волны, проходя ниже осадочной толщи, во многих местах показывают постоянную по величине скорость порядка 5,4–5,6 километра в секунду. С такой скоростью, как показывают опыты в лабораториях и в поле, волны проходят через изверженные породы «кислого» состава, т. е. граниты. Гранит — широко распространенная порода. Он представляет собою затвердевшую магму и состоит из полевого шпата, кварца и слюды. Известны обширные выходы гранита на поверхность — в Финляндии, на Украине, на Урале, в Сибири.

Мощность (т. е. толщина) «слоя» гранита меняется в широких пределах, и в некоторых местах достигает нескольких десятков километров.

Гранита нет под дном Тихого океана. Его также нет, или почти нет, под дном Индийского и Атлантического океанов. Под материками слой гранита почти повсеместно обладает мощностью около 10 километров. Наконец, под современными горными цепями, такими, как Альпы или хребты Памира, слой гранита достигает наибольшей мощности — километров до 50.

Несколько иначе ведет себя следующий «слой» — слой базальта. Этот «слой» обнаруживается с очевидностью по изменению скорости распространения упругих колебаний, которая достигает в нем значений порядка 6,0–6,5 километра в секунду (для продольных волн). Базальт в химическом отношении принадлежит к классу «основных» изверженных пород. «Основные» породы отличаются от «кислых» тем, что в них меньше окиси кремния (т. е. мало или совсем нет таких минералов, как кварц и полевой шпат) и больше темных, цветных минералов (таких, как оливин), содержащих железо, магний и др. «Основные» породы темнее и тяжелее «кислых».

В области обширных и плоских равнин материков слой базальта достигает значительной мощности — до 30 километров. Под современными горными хребтами его толщина, по-видимому, несколько сокращается. Под дном океанов в некоторых случаях слой базальта не обнаруживается совсем.

Гранитный и базальтовый слои вместе образуют оболочку, которая получила наименование «сиаль» — от слов silicium (кремний) и aluminium (алюминий). Некоторые геофизики полагают, что с сиалической оболочкой целесообразно отождествлять понятие о земной коре. Таким образом, в представлении этих геофизиков земная кора обладает наибольшей мощностью (50–60 км) в пределах горных хребтов; в области материков она всюду сохраняет примерно одинаковую толщину, порядка 35 км, и в области океанов (по крайней мере, Тихого) ее нет.

Еще глубже, т. е. ниже слоя «сиаль», залегают «ультраосновные» породы, которые более богаты железом и магнием, чем «основные»; здесь получают преобладание такие минералы, как фаялит, форстерит, оливин и др. Такому составу соответствуют горные породы перидотит, эклогит, пироксенит, дунит. Это первая оболочка, охватывающая весь земной шар сплошь, без перерывов. Под материками и горными системами рассматриваемая оболочка залегает, следовательно, под сиалической, а в области океанов она непосредственно подходит ко дну. Толщина ее определяется с большой точностью, ибо по различным источникам получается одна и та же цифра — до 1200 км ниже поверхности Земли. Часто ее называют перидотитовой или же симатической, по слову «сима», т. е. silicium (кремний) и magnesium (магний).

Важно отметить, что граница между наружной сиалической оболочкой и данной, симатической или перидотитовой, проявляется с большой резкостью. Это так называемая «поверхность раздела первого рода», на которой упругие свойства вещества резко меняются. Так, по данным Е. А. Розовой, скорость продольных сейсмических волн для верхнего горизонта («сиаль»), по наблюдениям в Средней Азии, определяется в 5,5–6,3 км/сек, а нижнего т. е. ниже поверхности раздела — 7,9 км/сек. Для атлантического побережья Северной Америки получены цифры соответственно 5,8 и 7,5 км/сек. Подобных примеров можно привести множество. В целом оказывается, что скорость продольных волн в слое «сиаль», в его нижних горизонтах, достигает приблизительно 6 км/сек, а ниже поверхности раздела, в слое «сима» сразу повышается до 8 км/сек. Эта поверхность часто именуется поверхностью Мохоровичича, по имени югославского ученого, открывшего ее впервые.

Зная состав оболочек «сиаль» и «сима», можно рассчитать, какова будет плотность вещества на различных уровнях. Удельный вес осадочных пород, как правило, меньше 2,5, гранита — около 2,6, базальта — 2,7, перидотита — 3,2. Такими цифрами и нужно определять плотность соответствующих слоев. В нижней части перидотитовой оболочки плотность возрастает до 4,0–4,5.

Заметим одно обстоятельство: формулы, по которым определяется скорость упругих колебаний, показывают, что при возрастании плотности пород скорость должна уменьшаться. Следовательно, нельзя, как часто думают, объяснять увеличение скорости упругих волн на глубине бóльшей плотностью расположенных там пород. Скорость растет потому, что растет давление, оказываемое вышележащими породами на нижележащие; вследствие роста давления изменяются упругие свойства вещества (возрастают модуль всестороннего сжатия и модуль сдвига), что и ведет к увеличению скорости.

В направлении от верхней границы перидотитовой оболочки к нижней скорость упругих колебаний снова растет, причем постепенно: от 7,9 до 11,7 км/сек для продольных волн и от 4,4 до 6,5 км/сек для поперечных. Плотность вещества также изменяется — от 3,3 до 4,5.

На глубине 1200 км, а также на глубинах 1700 и 2400 км, снова имеются поверхности раздела, но они отличаются от поверхности Мохоровичича тем, что изменение упругих свойств вещества здесь происходит нерезко — изменяется лишь темп роста скорости. Такие поверхности носят наименование «поверхностей раздела второго рода». Скорость продольных волн, пересекающих слой от 1200 до 2900 километров глубины, изменяется от 11,7 км/сек до 13,6 км/сек. Плотность вещества у нижней границы данного слоя достигает приблизительно 6,0. Этот слой, заключенный между глубинами 1200–2900 км, чаще всего именуется «промежуточным слоем» или «промежуточной оболочкой».

Новая резкая поверхность раздела обнаруживается на глубине 2900 км; это снова «поверхность раздела первого рода». Здесь совершенно неожиданно скорость упругих колебаний (продольных), достигающих этих глубин при сильных землетрясениях и проходящих еще далее вглубь, внезапно падает с 13,6 до 8,1 км/сек. После того как волны прошли эту границу, скорость их снова начинает расти, медленно и постепенно увеличиваясь от 8,1 км/сек на уровне 2900 км до 11,3 в центре Земли. Поперечные же волны, судя по всем данным, вообще не проходят глубже 2900 км (рис. 6).

Рис. 6. Изменение скоростей продольных (Р) и поперечных (S) волн внутри Земли.

Что же происходит на границе, залегающей на глубине 2900 км, границе, которая, как считают, отделяет «промежуточную оболочку» от «ядра» Земли? Почему так меняются упругие свойства вещества? Трудно дать окончательный ответ, но скорее всего дело заключается в резком изменении плотности пород (при переходе через эту границу), скажем, с 6 до 10. Такое резкое изменение может быть вызвано либо изменением состава «ядра» по сравнению с составом «оболочки», либо изменением свойств вещества «ядра», испытывающего огромное давление всей толщи пород, лежащих выше (рис. 7).

Рис. 7. Строение земного шара.

В последнее время появляются основания говорить о наличии еще нескольких поверхностей раздела (кроме уже упомянутых) на глубинах 900, 1800, 5800 км и др. Наличие подобных границ, или, по крайней мере, основных из них, таких, как подошва сиалической оболочки или граница ядра, сомнений не вызывает. Что же касается соображений о минералогическом составе оболочек и их агрегатном состоянии, то здесь, к сожалению, еще слишком много неясного. Прежде всего, нам мало известно, как изменяется внутри Земли температура и как влияет на свойства вещества одновременное воздействие высокой температуры и высокого давления.

Перейдем к рассмотрению этих вопросов.

5. Температура и давление внутри Земли

Чтобы рассчитать, каких значений достигает давление внутри Земли, вызванное весом горных пород, слагающих различные оболочки, нужно знать плотность пород на всех глубинах и величину силы тяжести также на всех глубинах вплоть до центра.

Как мы видели, плотность пород с глубиною растет, хотя и неравномерно. От 2,5 на поверхности она доходит до 3,4 на глубине около 100 км и до 6,0 на уровне 2900 км ниже поверхности. Здесь, на границе ядра, в величине плотности наблюдается скачок: она сразу достигает значения 9,5 (приблизительно), а далее снова растет равномерно, доходя в центре ядра до 12,5 (по М. С. Молоденскому, 1955) (см. рис. 8).

Рис. 8. Изменение плотности внутри Земли.

Что касается силы тяжести, то о ней можно сказать следующее. Сила тяжести — сила, с которой Земля притягивает к себе все тела. Под влиянием этой силы тела, находящиеся в свободном состоянии (например, в воздухе), падают на Землю, т. е. движутся по направлению к центру Земли, постепенно убыстряясь, т. е. получая «ускорение». Величину «ускорения силы тяжести» можно вычислить. На поверхности Земли ускорение силы тяжести равно приблизительно 9,8 м/сек2; в глубине Земли оно сначала немного возрастает, достигая максимума близ поверхности ядра, а затем быстро падает, доходя в центре Земли до нуля (рис. 9). Это понятно: точка, находящаяся в центре земного шара, притягивается всеми окружающими ее частями, с одинаковой силой по всем радиусам, а в итоге равнодействующая будет равна нулю.

Рис. 9. Изменение ускорения силы тяжести внутри Земли.

Обладая указанными сведениями, мы можем вычислить вес столбика пород с поперечным сечением, равным 1 кв. сантиметру, и длиной, равной радиусу Земли или любой его части. Это и будет давление, оказываемое весом вышележащих пород на элементарную площадку (1 кв. см)в глубине Земли. Расчеты приводят к следующим цифрам: у «подошвы» земной коры, т. е. у основания сиалической оболочки (на глубине 50 км) — около 13 тыс. атмосфер, т. е. около 13 тонн на квадратный сантиметр; на границе ядра — около 1,4 миллиона атмосфер; в центре Земли — около 3 млн. атмосфер (рис. 10). Три миллиона атмосфер — это приблизительно три тысячи тонн на квадратный сантиметр. Это — огромная величина. Ни в одной лаборатории достичь таких давлений пока не удалось.

Рис. 10. Изменения давления внутри Земли.

Перейдем к температуре. По данным измерений в буровых скважинах, а также в шахтах, выяснено, что с глубиной температура растет, поднимаясь приблизительно на 3° на протяжении каждых 100 метров. Подобный темп роста температуры сохраняется всюду, на всех материках, но лишь в наружных частях Земли, близ самой ее поверхности. С глубиной величина «геотермического градиента» (геотермический градиент — изменение температуры в градусах на каждый сантиметр) падает. Вычисления, основанные на учете теплопроводности горных пород, показывают, что геотермический градиент, известный для наружных частей земного шара, сохраняется не далее, чем на протяжении первых 20 км; ниже рост температуры заметно замедляется. У подошвы сиалической оболочки вряд ли температура будет выше 900°; на глубине 100 км — около 1500°; дальше рост ее еще более замедляется. Что касается центральных частей Земли, в частности ядра, то с достоверностью о них оказать что-либо очень трудно. Специалисты, изучавшие этот вопрос, полагают, что недра Земли нагреты не выше, чем на 2–3 тысячи градусов (рис. 11).

Рис. 11. Изменение температуры внутри Земли.

Может быть, интересно для сравнения напомнить, что в центре Солнца температура оценивается в 1 миллион градусов, на поверхности Солнца — около 6000°. Волосок горящей электрической лампочки накален до 3000°.

Интересные данные имеются по вопросу об источниках тепла и тепловом режиме земного шара. Когда-то считалось, что Земля сохраняет в себе «первозданное» тепло, оставленное ей «в наследство» Солнцем, и постепенно теряет его, остывая и сокращаясь в объеме. Открытие радиоактивных элементов изменило прежние представления. Оказалось, что породы, слагающие земную кору, содержат радиоактивные элементы, которые самопроизвольно и непрерывно выделяют тепло. Количество этого тепла оценивается приблизительно в 6 миллионных долей малой калории на 1 кубический сантиметр породы в год, а для того, чтобы покрыть весь расход тепла, излучаемого земной поверхностью в мировое пространство, нужно, чтобы такой же элементарный кубик породы выделял всего лишь три десятимиллионные части малой калории в год. Другими словами, нет никаких оснований полагать, что земной шар остывает. Скорее, наоборот, он может разогреваться. На этом основании в последние годы предложены новые гипотезы развития земной коры и происхождения движений, испытываемых ею.

Учитывая наличие высокой температуры в недрах Земли, мы вправе поставить такой вопрос: в каком же физическом («агрегатном») состоянии находятся внутренние части Земли? В твердом или жидком, или, быть может, газообразном?

Последняя версия, т. е. представление о газообразном состоянии вещества внутри Земли, может быть сразу отклонена. Чтобы превратить в газ минералы, слагающие Землю, нужна гораздо более высокая температура, чем та, которая допустима, судя по изложенным выше данным.

Но в жидком состоянии породы могут оказаться. Известно, например, что «кислые» породы плавятся при 1000°, «основные» — при 1000–1200°, «ультраосновные» — при 1300–1400°. Это значит, что уже на глубине 100–130 км породы должны бы расплавиться. Но там очень высокое давление, а давление повышает температуру плавления. Чье же влияние окажется бóльшим: высокой температуры или высокого давления?

Здесь нужно снова обратиться к помощи сейсмических наблюдений. Продольные и поперечные волны свободно проходят через все оболочки Земли, заключенные между поверхностью Земли и границей ядра; следовательно, всюду здесь вещество ведет себя, как твердое. С таким выводом согласуется заключение астрономов и геофизиков, которые показали, что твердость Земли в целом близка к твердости стали. По вычислениям В. Ф. Бончковского, твердость Земли оценивается в 12 · 1011 дин на квадратный сантиметр, что в четыре раза больше твердости гранита.

Таким образом, совокупность современных данных говорит о том, что все оболочки Земли (кроме ее ядра!) должны считаться находящимися в твердом состоянии. Жидкое состояние материи можно допустить лишь для совершенно незначительных участков в толще земной коры, с которыми непосредственно связаны вулканы.

6. Движения земной коры

Всюду на поверхности Земли, в толще земной коры мы видим признаки и следы разнообразных и могучих движений, которые испытывало вещество земной коры. Эти движения, развиваясь медленно и постепенно, захватывают огромные толщи пород, распространяются на огромные территории и приводят к возникновению высоких горных цепей и глубоководных впадин, поднятий и опусканий, к возникновению бесчисленных складок и разрывов в пластах осадочных пород. Вся геологическая история есть история движений земной коры, движений крайне разнообразных по форме проявления, по ориентировке, по масштабу, но движений постоянных и повсеместных; достаточно ярким выражением таких движений могут служить современные горные цепи, представляющие нагромождение складок, созданных в прошлом и продолжающих формироваться и теперь.

Как же согласовать наше прежнее утверждение о твердости Земли с фактом подвижности земной коры, с наличием повсеместных, порою самых фантастичных по масштабу движений в толще Земли?

Движения в верхних частях коры связаны с движениями более глубоких частей коры и с движениями в веществе подкоровой оболочки. Подобные движения (они называются «тектоническими») захватывают толщу Земли на многие сотни километров вглубь и одним из доказательств их реальности служат глубокофокусные землетрясения, т. е. землетрясения с очагами, лежащими на глубинах порядка 300–600–700 километров.

Одной из отличительных черт тектонических движений служит их крайне малая скорость: 1 сантиметр в год — это для большинства мест уже много. Правда, геология располагает, как мы видели, такими запасами времени, что даже самые скромные по своему темпу движения успевают произвести грандиозный эффект.

Другим свойством тектонических движений служит их «дифференцированность», т. е. пестрота в их направлении и скорости. Именно эта дробность движений, разнообразие, различия в каждом данном пункте, приводят к чрезвычайному усложнению геологического строения. Любая геологическая карта складчатой области отражает на себе подобную «дифференцированность» тектонических движений.

Что же в конце концов получается: с одной стороны, вещество наружных оболочек — твердое, а с другой, — оно способно к перемещениям? Да, именно так, и противоречия тут нет.

Твердость, даже твердость тел кристаллического строения, отнюдь не исключает способности к перемещениям вещества внутри данного твердого тела. Кристаллы способны к деформациям без разрыва, к изгибам, измятиям, способны, в конце концов, течь — и все это в твердом состоянии, не меняя и не нарушая своей кристаллической природы, формы кристаллической решетки, даже ориентировки элементов этой решетки. Сущность этого процесса сводится к так называемым «пластическим» деформациям: в каждом кристалле можно найти такие плоскости, такие направления, смещение по которым не сопровождается разрушением кристалла, не ведет к разрыву, к появлению трещин. Можно сослаться на такие минералы, как гипс, каменная соль, слюда, турмалин, свинцовый блеск, кальцит, которые часто встречаются в изогнутом виде или с изогнутыми гранями или вообще деформированы, но, подчеркиваем, без трещин разрыва и без дробления.

Лабораторные исследования, а также наблюдения в поле показывают, что природа не знает здесь преград и как самые прочные, так и самые хрупкие кристаллы, такие, скажем, как кварц, не говоря уже о мягких, податливых минералах, дают отличные примеры пластических деформаций, порою выраженных чрезвычайно ярко (рис. 12). Можно сказать, что все кристаллы (тем самым и минералы, а следовательно, и горные породы) пластичны, т. е. обладают, в большей или меньшей степени, способностью к пластическим деформациям, и степень этой способности зависит не только от внутренних, присущих данному веществу, свойств, но и от внешних условий.

Рис. 12. Кусок горной породы (железистый кварцит) из окрестностей г. Старого Оскола с мелкими складками, дающими пример ярко выраженных пластических нарушений.

Здесь мы несколько приближаемся к решению того вопроса, который был поставлен вначале: в каком состоянии находится вещество Земли в глубине. Оказывается, высокое давление и высокая температура благоприятствуют развитию пластических деформаций. Многие кристаллы становятся пластичными только в условиях всестороннего давления, превышающего по своей величине прочность этих кристаллов; таков, например, кварц. Притом давление, именно всестороннее, играет ведущую роль, более существенную, чем температура.

Можно считать, что уже начиная с глубины в 15–20 км все породы становятся пластичными, а многие из них достигают этой способности и гораздо раньше. Подчеркнем: они становятся пластичными, но остаются твердыми. И тектонические напряжения, развивающиеся в недрах Земли, разрешаются в форме пластических смещений, повсеместных, но крайне медленных, именно тех, которые геологами и названы тектоническими.

Здесь можно несколько уточнить наши представления в отношении физических свойств вещества глубоких оболочек. Тектонические движения представляют собою пример, как мы видели, движений очень медленных, движений «длинного периода». Удары землетрясений, распространяющиеся по толще Земли с огромной скоростью и быстро затухающие, наоборот, дают пример движений резких и кратковременных, движений «короткого периода». Так вот, на воздействия короткого периода недра Земли реагируют как твердое тело; на воздействия длинного периода — как жидкое. Это можно пояснить таким примером. Возьмите лед: если бросить льдину на пол или ударить по ней молотком, то она расколется, ибо лед хрупок. Но хрупкость эта не мешает тому же льду в форме горного ледника, спускающегося с гор, спокойно и безостановочно течь, следуя всем изгибам долины, со скоростью до 2–3 метров в сутки. Ясно, что наши понятия «твердое» и «жидкое» довольно относительны.

Нам остается рассмотреть вопрос о ядре Земли. Здесь обстановка иная. Каковы бы ни были наши гипотезы о плотности вещества в ядре, температуре, давлении и т. п., один факт остается неизменным: поперечные сейсмические волны через ядро не проходят. У нас нет пока иного объяснения этому факту, кроме того, что вещество ядра находится в жидком состоянии, в жидком как по отношению к воздействиям длинного периода, так и короткого. Ведь только жидкости (и газы) не пропускают сквозь себя поперечные сейсмические волны. Правда, здесь возникает много нерешенных и неясных вопросов; не исключена возможность того, что со временем будут обнаружены признаки прохождения поперечных волн через ядро; кроме того, может оказаться, что при том колоссальном давлении и той высокой температуре, которые господствуют в ядре, наши обычные рассуждения теряют силу и нужно искать какие-то иные закономерности. Мы не будем затрагивать эти сложные и нерешенные проблемы.

7. Химический состав Земли

Мы уже коснулись немного этого вопроса. Мы видели, что земная кора состоит в основном из магматических горных пород кислого или основного состава и что ее подстилает перидотитовая оболочка ультраосновного состава. Рассмотрим этот вопрос несколько подробнее.

Среди коренных пород, выходящих на поверхность Земли, преобладают осадочные (рис. 13).

Рис. 13. Обнажение осадочных горных пород близ г. Подольска, Моск. обл.

Но по мере увеличения глубины быстро возрастает роль изверженных, или магматических, пород; можно считать, что последние составляют процентов 95 от всей массы пород, заполняющих наружные 10–15 километров толщи земной коры. Поскольку химический состав горных пород известен, тем самым известен и химический состав внешних частей земной коры. Далее положение становится менее ясным. Если наши прежние рассуждения относительно состава и глубины залегания различных слоев в земной коре — гранитного, базальтового — правильны, то можно дать цифры, характеризующие химический состав земной коры («сиаль») в целом. Результаты получаются такими: кислород — около 50 %; кремний — около 25 %; алюминий — около 7 %; железо — около 4 %; далее следуют кальций, натрий, калий, магний, а все остальные элементы — в количествах менее 1 % каждый.

Ниже, в толще «перидотитовой», а затем и «промежуточной» оболочек, как обычно считалось, роль кислорода, кремния и алюминия снижается и на первое место выступает железо. Для всего земного шара, включая и ядро, приводились такие цифры (В. И. Вернадский, А. Е. Ферсман, Г. Вашингтон): железо — около 40 %; кислород — около 28 %, кремний — около 15 %; магний — около 9 %, далее никель, кальций, алюминий, а остальные элементы в количествах менее 1 % каждый.

Какие соображения положены в основу этих расчетов?

Прежде всего, как о том говорилось, данные о распределении плотностей внутри Земли. Сведения о законе изменения плотностей в глубинах Земли могут считаться достоверными. Увеличение плотности с глубиной несомненно, и средняя плотность Земли в целом — 5,52 — вычислена с большой точностью.

Другое обстоятельство — проблема метеоритов. Метеориты, блуждающие в мировом пространстве, выпадают на Землю в довольно больших количествах. В течение года Земля получает в виде метеоритов несколько тысяч тонн вещества. До последнего времени считалось, что метеориты, так же как и астероиды («малые планеты»), представляют собой осколки когда-то распавшейся планеты, орбита которой находилась между Землей и Марсом. Недавно высказана другая мысль, о которой мы уже говорили в начале статьи, касаясь гипотезы О. Ю. Шмидта: планеты суть скопление метеоритов. Так или иначе, в обоих случаях между планетами (в том числе и Землей) и метеоритами имеется, очевидно, некоторая родственная связь, и состав метеоритов не должен сильно отличаться от состава планет, в том числе и Земли.

К настоящему моменту хорошо изучено около 600 выпавших на Землю в разные времена и в разных местах метеоритов. Из них около 50 оказалось железными, остальные — каменные. Железные метеориты содержат 91 % самородного железа, остальное приходится на никель (8 %), фосфор и кобальт (1 %). Каменные метеориты по своему составу очень близки к ультраосновным породам типа перидотитов и содержат преимущественно такие минералы, как оливин, и близкие к нему.

В целом средний химический состав метеоритов, по А. Е. Ферсману, определяется такими цифрами: кислород — около 53 %; кремний — около 15 %; магний — около 13 %; железо — около 12 %; сера — около 2 %; алюминий — около 1 %; остальные элементы — меньше 1 % каждый[4]).

Какие же выводы можно сделать на основании этих сведений?

Прежде всего надо отметить химическое родство тел солнечной системы, химическое тождество их (мы сказали бы химическое единство) — вывод, имеющий большое методологическое значение. Ни одного элемента, ни одного минерала не обнаружено в метеоритах такого, которого бы не было на Земле.

Далее, обращает на себя внимание тот факт, что метеориты по своему химическому составу близки к земной коре, если судить о составе последней по приведенным выше цифрам, основанным на химических анализах горных пород.

Наконец, третье обстоятельство: существование железных метеоритов указывает на возможность значительной дифференциации (разделения) вещества, что, вероятно, относится и к Земле, в условиях которой одним из ведущих факторов в этом отношении могут явиться гравитационные силы (т. е. сила тяжести). Под воздействием силы тяжести минералы тяжелые должны стремиться к центру Земли, минералы легкие — к поверхности. Земля будет расслаиваться, что облегчается пластическим состоянием вещества в глубине земного шара. Такое расслоение называется «гравитационной дифференциацией». В последние годы «гравитационная дифференциация» привлекает большое внимание геологов и геофизиков. В. В. Белоусов предложил гипотезу о причинах тектонических движений, в основу которой положена идея о гравитационной дифференциации; эта идея в свою очередь связана с космогонической теорией О. Ю. Шмидта.

Все изложенное, казалось бы, приближает нас к решению вопроса о составе земного шара, в том числе и его ядра, если бы не одно обстоятельство: опять все то же высокое давление! Дело в том, что при очень высоком всестороннем давлении силикаты, т. е. минералы, из которых состоят ультраосновные породы, могут настолько сильно уплотняться, что переходят в новую, так называемую металлическую фазу, приобретая свойства металлов, в частности железа. Еще в 1939 г. В. Н. Лодочников, профессор Ленинградского горного института, предлагал объяснить поведение сейсмических волн в глубине Земли «уплотнением пронизываемых тел от нагрузки вышележащих пород без всякого изменения вещественного состава этих тел». Позже эту мысль подтвердил английский ученый В. X. Рамсей, показавший с помощью расчетов, что такой процесс возможен и что прежняя гипотеза о железном ядре отнюдь не является обязательной.

Что же в итоге? Изменяется ли состав земных оболочек с глубиной так, что в ядре остается почти одно лишь железо? Или состав не изменяется, но вещество залегающих в глубине минералов переходит в новую фазу и меняются лишь его свойства? Известный советский геофизик В. А. Магницкий пишет по этому поводу так: «…в настоящее время мы должны считать обе гипотезы о строении ядра равноправными рабочими гипотезами». Вероятно, это так; но в последние годы, нужно заметить, накапливается все больше фактов, которые говорят не в пользу гипотезы о железном ядре, а, скорее, в пользу упомянутых выше идей В. Н. Лодочникова.

8. Строение и развитие земной коры

До сих пор мы занимались в основном Землею в целом. Следовало бы теперь несколько ближе заняться вопросом о земной коре.

Как уже говорилось, «земная кора» обычно отождествляется с сиалической оболочкой; другими словами, к земной коре относятся «слои» гранитный и базальтовый. В таком случае мощность, т. е. толщина земной коры в пределах обширных равнинных пространств материков, будет определяться цифрой порядка 40–50 км, под горными хребтами — до 80 км, а под океаном сходит на нет.

Можно предложить другой вариант: считать, что земная кора — это наружная кристаллическая твердая оболочка земного шара, в пределах которой температура меняется от 0° на поверхности до 1300–1500° на глубине (т. е. возрастает до температуры плавления горных пород). В таком случае толщина земной коры всюду будет равна 100–130 км, независимо от состава слагающих ее пород и независимо от того, где мы ее рассматриваем — на материке или в океане.

Какое бы значение термину «земная кора» ни придавать, нас, обитающих на поверхности Земли, особенно интересует строение самых поверхностных частей ее, сложенных по преимуществу осадочными породами.

Изучая состав, расположение и прочие особенности и свойства осадочных пород, мы обнаруживаем следующее важное обстоятельство.

Обширные пространства равнин — таких, как Русская или Сибирская — с поверхности сложены разнообразными осадочными породами, образующими слои малой мощности и горизонтального залегания. Действительно, в любом обрыве, в овраге, на склоне подмытого рекою берега или в искусственном карьере вы можете увидеть подобные породы — пески или песчаники, глины или известняки, залегающие в форме ясно выраженных горизонтальных слоев, далеко распространяющихся в стороны, но быстро сменяющих Друг друга в вертикальном направлении. По своему происхождению эти породы чаще всего оказываются морскими, о чем говорят заключенные в них окаменевшие остатки морских животных, например белемниты, аммониты и т. п.; нередко встречаются породы и континентального, наземного происхождения, о чем говорят заключенные в них остатки растений прежних времен; таковы, скажем, каменный уголь и торф.

Подобные породы очень мало изменены временем. Конечно, они уплотнены; по сравнению с тем первоначальным рыхлым осадком, из которого образовались, они приобрели новые черты, но все же процесс уплотнения не нарушил их структуры, не изменил условий залегания, не повредил ископаемых. В некоторых случаях породы сохраняют свою свежесть в такой степени, что кажутся отложившимися только сейчас; таковы, скажем, кембрийские глины под Ленинградом. Этим глинам не менее 500 миллионов лет, а они так свежи и податливы, будто образовались совсем недавно.

Среди подобных спокойно залегающих пластов мало измененных осадочных пород изверженные породы почти не встречаются; здесь, среди равнин, как правило, не бывает ни вулканов, ни гейзеров, ни горячих источников, ни других проявлений вулканической жизни; здесь не возникают и землетрясения.

Все описанные выше свойства присущи тем участкам земной коры, которые именуются «платформами». В пределах платформ тектонические движения проявляются очень слабо. Они выражаются лишь в том, что платформа вся в целом или отдельные ее части испытывают очень медленные, едва заметные подъемы или погружения, сменяющие друг друга со временем, что приводит то к наступлению моря на сушу, то к отступлению. Отсюда — изменение в составе осадков, накапливающихся на платформах. В этом выражаются так называемые колебательные движения. Следовательно, под платформами следует понимать сравнительно устойчивые, малоподвижные участки земной коры, в пределах которых накапливаются осадки малой мощности, слои залегают в ненарушенном положении, проявлений вулканизма нет, землетрясений нет, горных кряжей нет.

Полную противоположность платформам составляют так называемые «складчатые зоны», примером которых могут служить такие горные системы, как Карпаты или Кавказ. Прежде всего, здесь нас удивляет огромная мощность осадочных пород: если на платформах мощность осадочных толщ измеряется десятками или, реже, сотнями метров, то в пределах складчатых зон — многими тысячами метров. Как могли накопиться такие огромные массы осадков, и притом, как правило, морских? У нас нет другого объяснения, как только предположить, что параллельно с накоплением осадков дно соответствующего бассейна прогибалось, давая тем самым место новым порциям осадка. Отсюда следует, что в истории развития складчатой зоны нужно выделять некоторый ранний этап, характеризующийся преобладанием погружений над поднятиями. Погружения были достаточно крупными по масштабу и весьма длительными по времени. Подобный ранний этап в развитии складчатой зоны именуется «геосинклинальным», а участок коры, находящийся в таком состоянии, «геосинклиналью». Геосинклинальный режим сохраняется обычно на протяжении нескольких периодов (например, для Урала — в течение всего палеозоя, для Кавказа — еще дольше) и приводит к накоплению тех огромных по мощности толщ осадков, о которых говорилось выше.

Затем наступает второй этап в развитии геосинклинали. В ее пределах начинают проявляться разнообразные и в высшей степени интенсивные процессы движения. В первую очередь это собственно тектонические движения, которые сминают пласты, приводят к образованию складок, порою грандиозных и очень сложных, к разрывам и перемещениям одних участков относительно других. Достаточно взглянуть на разрезы коренных пород, которые во множестве предстают перед нами в любой горной стране, чтобы убедиться в том, что здесь почти невозможно найти ненарушенный участок: всюду пласты измяты (рис. 14) и изогнуты или стоят вертикально, а порою и опрокинуты и разорваны. Подобные тектонические нарушения — один из главных объектов изучения той отрасли геологии, которая именуется «тектоникой».

Рис. 14. Обнажение горных пород в современной складчатой зоне (Памир). Хорошо видны складки, в которые собраны пласты.

Но не только тектонические нарушения в пластах отличают складчатую зону. Сами породы здесь изменены настолько, что порою трудно представить себе, какими они были прежде. Вместо известняка возникает мрамор, вместо песчаника — кварцит, вместо плотной глины — кристаллический сланец и т. д. В этом сказываются так называемые процессы «метаморфизма» (изменения). Они состоят в воздействии на породы высокой температуры и высокого давления — как от веса пород, лежащих над данной точкой, так и от тектонических сил. В итоге породы перекристаллизовываются, приобретают иную структуру, в них появляются новые минералы, и от прежнего облика не остается почти ничего. Таковы породы, которые именуются метаморфическими; они широко распространены в пределах складчатых зон.

Еще одна особенность складчатых зон — обилие изверженных пород. Вулканические явления здесь крайне разнообразны. Обширные внедрения кислой или основной магмы в толщу осадочных пород, которые после застывания магмы превращаются в огромные погребенные кристаллические тела — «батолиты»; внедрения, застывающие ближе к поверхности и дающие грибообразные формы — «лакколиты»; разнообразные жилы, межпластовые внедрения магмы, небольшие по размерам «штоки» и т. д., вплоть до обыкновенных вулканов и подводных извержений — таковы бесчисленные по разнообразию и масштабам формы проявления вулканических сил, приводящие к накоплению в толще коры массивов изверженных пород. Взаимодействие между изверженными породами и осадочными представляет объект геологических исследований, так как в контакте между теми и другими нередко появляются важные полезные ископаемые.

Характеристика складчатой зоны должна быть дополнена тем, что период оживления тектонических движений заканчивается, как правило, общим осушением данного участка геосинклинали, поднятием его и образованием высоких гор. Параллельно с этим в области развивающейся складчатой зоны проявляется множество землетрясений.

Итак, после длительного этапа геосинклинального развития начинают проявляться тектонические движения большой интенсивности как колебательные, так и складкообразовательные; возникают многочисленные складки и разрывы в толще накопившихся ранее пород, отмечается интенсивная вулканическая и сейсмическая деятельность; повсеместно проявляются процессы метаморфизма, и, наконец, формируются горы. Геосинклиналь, таким образом, превращается в складчатую зону.

В дальнейшем все описанные выше процессы затухают, и горы, подвергаясь длительному воздействию различных внешних агентов — рек, ветра, солнечных лучей, мороза и т. п., — разрушаются, сглаживаются и постепенно исчезают, уступая место плоской равнине. Следовательно, на месте прежней геосинклинали возникает платформа. Геосинклиналь через стадию складчатой зоны переходит в платформу.

Разумеется, геосинклинали, складчатые зоны и платформы могут быть разного возраста. Так, в Норвегии геосинклинальный режим прекратился еще в начале палеозойской эры (в силурийском периоде). Урал в течение всего палеозоя представлял собой геосинклиналь; в конце палеозойской эры здесь с большой интенсивностью проявлялись тектонические движения, и, наконец, с середины мезозойской эры на месте Урала образовалась устойчивая малоподвижная платформа. На Кавказе геосинклинальный режим сохранялся дольше, до конца мезозойской эры; сейчас Кавказ — типичная складчатая зона, находящаяся в процессе интенсивного развития. Пройдет несколько миллионов лет, процессы внутреннего происхождения затихнут, и Кавказ начнет превращаться в платформу. Русская платформа тоже когда-то (очень давно, еще до палеозоя) переживала эпоху чрезвычайно сильных движений, с обильными внедрениями изверженных пород и сильнейшей метаморфизацией всех толщ, а к началу палеозойской эры здесь почти всюду оформился уже платформенный режим. Следы бурных революций прошлого мы видим в тех породах — метаморфических и изверженных, которые вскрываются под палеозойским осадочным покровом в тех или иных местах на Русской платформе — в Карелии, на Украине и т. д.

9. Источники энергии тектонических движений

Все вышеизложенное ставит перед нами вопрос об источниках тектонической энергии.

Каковы причины тектонических движений? Какие процессы рождают в Земле такие силы, которые способны деформировать земную кору и воздвигать горы, создавать вулканы и сотрясать огромные площади при землетрясениях? Вопрос этот очень труден. Окончательного ответа на него у нас пока нет. Но ряд соображений имеется, и в этом отношении советская геологическая наука сделала уже много.

Старинная гипотеза о «контракции» земного шара давно уже не считается правильной. «Контракция» — это сокращение в объеме, которое вызывается, как полагали, остыванием Земли. В. А. Магницкий недавно показал, что это гипотетическое остывание может оказаться реальным лишь в самых малых размерах; так, с начала кембрийского периода на глубине около 100 км понижение температуры составило всего лишь 45°, чего для гипотезы контракции совершенно недостаточно. Контракция не может объяснить периодичности в проявлении тектонических движений, а также того обстоятельства, что тектонические движения проявляются не повсеместно, а избирательно, захватывая главным образом геосинклинальные участки. Я уже не говорю о том, что вообще нет оснований полагать, что Земля охлаждается. Скорее, наоборот: в ее недрах сохраняется такой запас радиоактивных веществ, что она способна еще в течение длительного времени накапливать тепло и разогреваться.

Что же приходит на смену гипотезе о контракции?

Некоторое время тому назад была очень популярна гипотеза немецкого ученого А. Вегенера, гипотеза о горизонтальных перемещениях материков. А. Вегенер полагал, что легкие сиалические глыбы материков под влиянием сил, возникающих в земной коре при вращении Земли вокруг своей оси, смещаются, передвигаясь по тяжелому и пластичному слою «сима». Предполагалось, что когда-то единый материк раскололся и отдельные его части расползлись по поверхности Земли: Северная и Южная Америка отошли от Европы и Африки на запад, а на месте «рубца» возник Атлантический океан, Австралия отошла от Африки на восток, пересекла место, занимаемое Индийским океаном, и повернулась на 90°, заняв свое нынешнее положение, и т. д.

Теперь приходится отметить, что множество фактов геологического порядка противоречит гипотезе Вегенера; поэтому большинством советских геологов она не разделяется. Проверка, выполненная с помощью астрономических и геодезических методов, не обнаружила фактов, которые могли бы подтвердить реальность перемещений материков в том виде, как о них говорил А. Вегенер.

В несколько ином положении оказывается другая гипотеза, именно гипотеза «изостазии». Изостазия — стремление земной коры к равновесию. Предполагается, что относительно легкие массы, «сиаль», погруженные в относительно тяжелые породы фундамента «сима», как бы плавают на последних, подчиняясь обычным закономерностям, вытекающим из закона Архимеда: лишняя нагрузка ведет к погружению, снятие нагрузки — к поднятию. Некоторые ученые, особенно американский геодезист В. Боуи, пытались использовать изостазию в качестве фактора тектонического значения, т. е. приписать изостазии роль возбудителя тектонических движений, видеть в ней возможную причину возникновения гор. Попытка эта успехом не увенчалась.

Изостазия, как определенный физический процесс, без сомнения, реальна; стремление к изостатическому равновесию в земной коре существует, и тому есть много доказательств. Изостазия, в частности, ставит предел высоте известных на Земле гор и глубине впадин; изостазия регулирует поведение аномалий (т. е. отклонений от нормального значения) силы тяжести и т. п. Но из всего этого отнюдь не следует, что изостазия способна играть роль инициатора в возбуждении тектонических движений. Наоборот, она стремится их погасить; она «вступает в игру» только в том случае, если равновесие нарушено какими-то более мощными и глубоко заложенными силами, стремясь восстановить прежнее равновесие. Изостазия играет свою роль, но роль достаточно скромную, отнюдь не решающую в вопросах развития земной коры.

Не касаясь множества других предположений и гипотез, остановимся на тех явлениях, которые могут иметь наибольший интерес в деле создания современной тектонической гипотезы.

Следует считать установленным фактом известную подвижность вещества в недрах Земли примерно до глубины 800–1000 км. Физическими предпосылками к тому служат соображения о высокой пластичности пород, испытывающих суммарное воздействие высокой температуры и высокого давления, а свидетельством наличия в глубине тектонических напряжений и соответствующих им перемещений вещества являются очаги глубокофокусных землетрясений, данные о распределении на поверхности Земли аномалий силы тяжести и ряд других фактов.

Нет недостатка и в тех физических явлениях, которые могли бы вызвать перемещение вещества в глубинах Земли. К таким явлениям можно отнести и особенности термического режима, в частности неравномерное распределение температур в наружных частях земного шара, и силы, связанные с вращением Земли, и влияние радиоактивных элементов, и силу тяжести. Их относительное значение остается пока невыясненным. В последнее время особое значение придается двум из них, а именно силе тяжести и радиоактивности. Под влиянием силы тяжести в теле Земли должна происходить дифференциация вещества, т. е. погружение тяжелых частиц и поднятие к поверхности легких. Наличие радиоактивных веществ, которые сконцентрированы в основном в породах кислого состава, ведет к накоплению тепла и тем самым увеличивает возможность возникновения и облегчает осуществление как пластических деформаций, так и вообще перемещений вещества в толще Земли. Подобные медленные перетекания вещества из одних участков земного шара в другие получили наименование «конвекционных течений». Как только мы приходим к идее о возможности конвекционных течений, медленных, но захватывающих огромные участки земного шара, до глубин в сотни километров, так вопрос о природе движений, проявляющихся на поверхности, решается уже легче. Конвекционные течения, достигая наружных оболочек, неизбежно вовлекают в движение и сиалическую оболочку. Конечно, в земной коре имеются свои источники сил, например изостазия, но все же решающее значение в развитии тектонических процессов следует придавать силам, возникающим во всей толще перидотитовой оболочки.

Мы намеренно не приводим никаких цифр, никаких расчетов. Они трудно выполнимы и еще очень недостоверны. Вопрос о причинах тектонических движений и источниках энергии этих движений — труднейший вопрос не только геологии, но естествознания вообще, вопрос, далеко еще не решенный. Однако некоторые, как видим, пути в этом отношении намечаются. Будущая советская геотектоническая гипотеза должна быть построена на учете всего разнообразия физических процессов, протекающих в Земле, должна рассматривать эти процессы в их взаимосвязи, в их исторической последовательности, в развитии, указать основную направленность процесса развития — иными словами, должна отразить в себе требования, которые предъявляет к каждому научному исследованию марксистский диалектический метод. Только на этом пути можно надеяться на успех, и по этому пути уверенно идет советская геологическая наука.

Оглавление

Введение… 3

1. О происхождении Земли… 4

2. Возраст Земли… 7

3. Форма и размеры Земли… 12

4. Строение Земли… 16

5. Температура и давление внутри Земли… 25

6. Движения земной коры… 31

7. Химический состав Земли… 35

8. Строение и развитие земной коры… 39

9. Источники энергии тектонических движений… 44


Примечания

1

Ф. Энгельс, Диалектика природы, Госполитиздат, 1952, стр. 8.

2

В. И. Вернадский, Избранные сочинения, т. I, 1941 г., стр. 94.

3

Более подробно об этом см. в брошюре: В. И. Громов, Из прошлого Земли, «Научно-популярная библиотека».

4

Отметим, что недавно были предложены новые цифры, заметно отличающиеся от принятых ранее (работа Б. Ю. Левина).