science Рудольф Анатольевич Сворень В просторы космоса, в глубины атома [Пособие для учащихся]

В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки

ru
FictionBook Editor Release 2.6.5 19 February 2016 0070820D-78CC-4799-9235-8B4E699AF7F0 1.0

1.0 — создание fb2 из djv

"Просвещение" Москва 1981 Рецензенты: учитель физики 315-й школы г. Москвы, кандидат педагогических наук Гуревич А. Е., старший научный сотрудник НИИ содержания и методов обучения, кандидат педагогических наук Орлов В.А

Сворень Рудольф Анатольевич

«В просторы космоса, в глубины атома»

Пособие для учащихся

День физики

Этот первый наш рассказ не о новом празднике, таком, скажем, как День авиации или День шахтера. Это рассказ о будничном, рядовом событии — о традиционной сессии Отделения общей физики и астрономии Академии наук СССР. Вот уже много лет такие сессии проходят в конце почти каждого месяца в конференц-зале всемирно известного ФИАНа — Физического института им. П. Н. Лебедева Академии наук СССР.

Если составить баланс рабочего времени ученого, то далеко не последнее место в этом балансе займут расходы на «демократию» — участие в различного рода конференциях, симпозиумах, сессиях, семинарах, в обсуждении своих и чужих планов, своих и чужих работ. Можно спорить о количественной стороне дела, но в принципе подобный расход времени не просто нужен — он жизненно необходим. Вот лишь два из многих «за».

Первое: любая исследовательская работа, даже самая крупная, даже самая общая, — это только фрагмент единого наступления Науки на Неизвестность, наступления, которое требует четкой координации. Второе: рождение новых идей происходит в острых спорах, когда мы защищаемся, нападаем, пытаемся конкурировать с коллегами.

Тематика научных сессий Отделения общей физики и астрономии разнообразна, уровень докладов, как правило, весьма высок, обстановка демократичная, непринужденная. Сессия, о которой пойдет речь, проходила несколько лет назад, она выбрана для нашего рассказа в основном потому, что по многим важным показателям может считаться типичной. Конечно же, с того времени, когда проходила сессия, в понимании некоторых из обсуждавшихся проблем произошли изменения, были выявлены новые факты, проведены дополнительные исследования. О некоторых таких «изменениях и дополнениях» коротко рассказано в конце нашего повествования.

Сделав это предупреждение, приглашаем вас на открытие сессии.

Первый ее доклад был посвящен проблеме, которая в то время вызвала огромный интерес у самых разных специалистов — энергетиков, врачей, биологов, метеорологов, химиков, потому что проблема эта касалась вещества, которое играет важнейшую роль и в технике, и в природе, особенно в процессах жизнедеятельности. Это вещество — вода. Член-корреспондент Академии наук Б. В. Дерягин рассказал, как была обнаружена разновидность воды с некоторыми совершенно необычными свойствами.

Было обнаружено, что в тончайшем стеклянном капилляре с водой появляются самостоятельные столбики — в дальнейшем их назвали дочерними, — которые постепенно растут за счет основного столбика. Этот удивительный рост мог свидетельствовать лишь только об одном: давление паров воды в дочерних столбиках меньше, чем давление паров воды в основном столбике. А отсюда следовал и более общий вывод: в дочерних столбиках собирается вода с какими-то особыми свойствами, аномальная (необычная), или, как принято ее называть, модифицированная вода.

Некоторые свойства модифицированной воды удалось изучить. В частности, ее плотность оказалась на 40 % выше, вязкость и температурный коэффициент расширения в несколько раз больше, чем у обычной воды.

Несмотря на большую экспериментальную работу, ее авторы не сочли возможным предлагать какую-либо теорию аномальной воды. И конечно же, такой «теоретический вакуум» заметно активизировал интерес к работе, особенно со стороны теоретиков. Докладчику пришлось ответить на большое число вопросов, выслушать много идей, рекомендаций, возражений.

— О чем говорят спектры модифицированной воды?

— Эта часть работы не закончена. Масс-спектральный анализ новой воды проводится в Институте химической физики.

— Как ведет себя аномальная вода вне капилляров?

— Так же, как и в них.

— Сколько нужно времени, чтобы получить один грамм такой воды?..

— В неделю мы получаем примерно один миллиграмм…

— Значит, для получения грамма вам нужна тысяча этих единиц времени, тысяча недель?

— Не думает ли докладчик, что нужно было бы прежде всего измерить дипольный момент молекул?

— Не кажется ли вам, что вы встречаетесь с автокатализом, причем с необычным автокатализом?..

Ровный ритм «вопрос — ответ» сменяется каким-то сложным переплетением высказываний, замечаний, вопросов, предложений. В зале возникает несколько центров обсуждения, и докладчик периодически включается то в один, то в другой. Общий дух высказываний, несомненно, доброжелательный, но в этой аудитории не принято сглаживать углы, преуменьшать трудности, скрывать сомнения. Очевидно, поэтому с большим интересом было выслушано сообщение об экспериментах, проведенных в Институте физики высоких давлений. Исходя из того что модифицированная вода обладает повышенной плотностью, ожидалось, что ее можно получить, сильно сжимая простую воду. Однако даже при давлении, превышающем атмосферное в 60 000 раз, и температуре до 1000 °C модифицированная вода не появлялась.

В традиционном заключительном слове докладчик сказал:

— Не считая целесообразным и своевременным открывать дискуссию по существу проведенного эксперимента, я хотел бы ограничиться лишь одной общей рекомендацией — будьте очень осторожны с отрицательными результатами. Ошибка при обсуждении положительного результата неприятна, но не трагична.

Истина в итоге всегда будет обнаружена. Но ошибка при оценке отрицательного результата может надолго закрыть перспективный путь исследований.

Тема следующего доклада — сверхпроводимость. Она была открыта в 1911 г., но прошло больше 20 лет, прежде чем было установлено, что сильное магнитное поле разрушает сверхпроводимость, возвращает металлу электрическое сопротивление.

Можно ли сказать, что магнитное поле и сверхпроводимость всегда исключают друг друга? Это один из вопросов, на которые должны были ответить эксперименты, проведенные в Институте физических проблем. О них рассказал руководитель этой работы доктор физико-математических наук Ю. В. Шарвин, ныне член-корреспондент АН СССР. Он отметил, что переход из сверхпроводящего состояния в нормальное под действием магнитного поля в большинстве случаев оказывается постепенным. И в каком-то интервале значений магнитной индукции сверхпроводящее вещество оказывается в некотором особом состоянии, которое получило очень естественное название — промежуточное состояние.

В 1946 г. А. И. Шальников остроумными экспериментами доказал, что промежуточное состояние является просто смесью областей сверхпроводящего и нормального (проводящего) состояния. К этому времени Л. Д. Ландау создал количественную теорию строения вещества в промежуточном состоянии, согласно которой образец разделяется на чередующиеся сверхпроводящие и нормальные слои. Еще через несколько лет в Институте физических проблем удалось разработать неожиданно простую методику, с помощью которой структуру промежуточного состояния можно было увидеть просто, как говорится, невооруженным глазом. Над образцом распыляли тонкий железный или никелевый порошок, который притягивался нормальными областями, оставляя чистыми сверхпроводящие области. Перед учеными открылось бесконечное разнообразие узоров, состоящих из зигзагов, веточек, пятнышек, очень красивых, но слишком сложных для сопоставления с теорией.

В то время, когда делалась эта работа, и встал вопрос: какой вид будет иметь промежуточное состояние, если через образец пропустить электрический ток? Проще всего было предположить, что возникнет какое-то новое, еще более запутанное расположение слоев. Голландский физик Гортер указал и на более интересную возможность. При определенных условиях, считал он, сверхпроводящие слои должны двигаться по образцу, так как электрический ток будет концентрироваться в сверхпроводящих «жилках», и они, эти сверхпроводники в проводнике, начнут двигаться в магнитном поле, подобно ротору электромотора.

Предположение Гортера было проверено на опыте, показалось, что слои двигаться «не хотят». Они располагались поперек направления тока и оставались неподвижными. Но вот в Институте физических проблем испробовали новый метод, основанный на том, что движение слоев вблизи контакта тонкой проволочки с образцом приводит к колебаниям сопротивления, а их нетрудно измерить. С помощью этого метода было гораздо легче заметить движение слоев, чем с помощью магнитного порошка.

Исследования, проведенные этим методом, показали, что если образец достаточно чист и однороден, то движение сверхпроводящих слоев скорее является правилом, чем исключением. Можно расположить на поверхности образца два микроконтакта на небольшом расстоянии друг от друга и таким образом определить направление и скорость движения слоев. Скорость эта довольно мала — обычно лишь тысячные доли сантиметра в секунду, примерно с такой скоростью движется конец минутной стрелки наручных часов. И всегда существует одно исключительное направление слоев, при котором они стоят на месте. Если образец недостаточно однороден, то слои «зацепляются» за эти неоднородности, поворачиваются и вытягиваются, как флаг по ветру.

Так была выяснена еще одна интересная деталь во взаимодействии магнитного поля и сверхпроводимости, — той самой сверхпроводимости, которую пристально изучает физика и с которой связаны большие надежды техники.

Проблемам физики твердого тела на сессии было посвящено еще несколько докладов. В одном из них подводились итоги интересным работам, выполненным физиками Московского государственного университета им. М. В. Ломоносова.

Наряду с добыванием энергии и информации основой материального прогресса является и преобразование вещества. Сюда прежде всего относятся химические преобразования — создание новых молекул из стандартного набора атомов, изменение архитектуры молекул, изменение молекулярного состава вещества.

Так мы получаем нейлон из нефти или спирты из газов. Но химия— это далеко не последняя ступень на иерархической лестнице сотворения вещества. Начало века ознаменовалось тем, что физики научились переделывать атомное ядро, превращая, например, азот в углерод или уран в плутоний. Работа, о которой шла речь, была посвящена преобразованию вещества путем изменения электронной структуры его атомов.

Свойства любого атома, как известно, определяются не только числом электронов на орбитах, но и их энергией. Чем ближе электрон к ядру, тем сильнее он связан с ядром, тем ниже, как принято говорить, энергетический уровень этого электрона.

Энергетический спектр электронов — это, если можно так сказать, набор энергетических уровней всех электронов атома: изменить этот спектр — значит переконструировать электронные оболочки атомов вещества, изменить его свойства.

Основной метод, применявшийся в этих исследованиях, — комплексное воздействие на вещество. Не просто сверхнизкие температуры, не просто сверхсильные магнитные поля или сверхвысокие давления, а различные комбинации этих факторов. При этом удалось обнаружить немало интересных фактов.

Так, например, при давлении 30 МПа была открыта сверхпроводимость фосфора. Были выяснены причины загадочного исчезновения примеси при создании некоторых сплавов. Оказалось, что в веществе могут возникать тончайшие пластинки нерастворенной примеси.

А вот и вывод: электронный спектр вещества можно радикально менять и при этом, с одной стороны, можно создавать вещества с новыми свойствами, а с другой стороны, — и это особенно важно — исследовать общие закономерности формирования электронного спектра. Очевидно, отметил докладчик профессор Н. Б. Брандт, настало время изменить мнение о незыблемых свойствах вещества, в частности об абсолютном характере таких понятий, как «металл» и «полупроводник».

Физика твердого тела — это область фундаментальных исследований, с успехов которой начинается современная полупроводниковая электроника. Вот уже несколько десятилетий ведутся в этой области глубокие исследования, неизменно привлекающие внимание техники. Это относится и к исследованию экситонов — еще недавно не более чем гипотетических объектов физики твердого тела. Именно им были посвящены два следующих доклада.

Экситон (от слова «экситейшн» — «возбуждение») — это особое возбужденное состояние атомов кристалла, возникающее, например, под действием светового излучения. Экситоны — их принято рассматривать как некие подвижные частицы — были предсказаны в 1931 г. известным советским теоретиком Я. И. Френкелем и примерно 20 лет спустя экспериментально обнаружены в полупроводниках группой ленинградских физиков.

Представление об экситонах позволяет понять многие тонкие механизмы взаимодействия света с полупроводником. В первом из докладов рассматривались механизмы, связанные с исчезновением экситона при превращении его в световой импульс (например, в экситоновых лазерах). Второй доклад был посвящен поведению экситонов в сильном магнитном поле. Удалось получить уникальную информацию о строении полупроводников и изучить новый тип экситонов, возникающих в сильном поле. Экситонная тематика все больше интересует не только физиков, но и инженеров. И вполне вероятно, что слово «экситон», которым сегодня пользуется сравнительно узкий круг специалистов, станет таким же общеизвестным, как «атом» или «электрон». А рядом с электроникой появится самостоятельная область техники — экситоника.

Все сделанные на сессии доклады можно условно разделить на две группы — «Вещество» и «Космос». И сейчас нам предстоит перейти границу между этими группами: с первым докладом космической тематики на сессии выступил доктор физико-математических наук Николай Семенович Кардашев, ныне член-корреспондент АН СССР.

В марте 1968 г. в печати появилось сенсационное сообщение об открытии на звездном небе четырех источников радиоизлучения, от которых на Землю регулярно поступали импульсные сигналы, причем импульсы следовали друг за другом с поразительной точностью. Этим объектам дали название «пульсары».

Само открытие пульсаров очень напоминало события из известного фантастического романа «Андромеда». В этом совместном произведении английского астрофизика профессора Ф. Хойла и писателя Д. Эллиота рассказано о том, как радиоастрономы приняли из космоса странные сигналы, а затем, в секретном порядке продолжая исследования, установили контакт с представителями внеземной цивилизации.

Английские радиоастрономы Мюллардской обсерватории Кембриджского университета летом 1967 г. закончили строительство радиотелескопа, на котором предполагалось изучать быстрые изменения интенсивности излучения радиоисточников, обусловленные рассеянием радиоволн на облачках плазмы. Такие облачка выбрасываются из Солнца и движутся в межпланетном пространстве с большой скоростью. Радиоволны, приходящие от далеких источников, преломляются в облачках плазмы, и уровень радиоизлучения, принимаемого на Земле, из-за этого слегка колеблется. Для регистрации таких колебаний новый радиотелескоп был снабжен специальной аппаратурой, которая позволяла записывать очень быстрые изменения сигнала.

Систематические наблюдения неба с такой аппаратурой ранее не проводились, и в этом, между прочим, нет ничего странного. Для того чтобы регистрировать быстро меняющиеся радиосигналы, нужно принести в жертву такое качество радиоприемного устройства, как чувствительность. Известные космические радиоисточники дают достаточно постоянное по интенсивности излучение, и поэтому не имело смысла ухудшать чувствительность радиотелескопа в надежде на прием коротких радиоимпульсов. Появление их, по-видимому, просто не считалось вероятным.

И вот с такой аппаратурой 6 августа 1967 г. молодая аспирантка Жакелин Белл при наблюдении созвездия Лисички зарегистрировала очень странный сигнал — на ленте скоростного самописца оказались периодически повторяющиеся импульсы. Вскоре были найдены еще три аналогичных пульсирующих источника радиоизлучения.

Первоначально открытие не было принято всерьез. Дело в том, что радиоастрономы довольно часто обнаруживают импульсные сигналы на своих лентах. Их дают попадающие в радиотелескоп излучения радиолокационных станций, телевизионных передатчиков, систем связи со спутниками и другие помехи (разумеется, с точки зрения радиоастрономов), создаваемые земной цивилизацией. Однако, к удивлению сотрудников Мюллардской обсерватории, систематическое наблюдение обнаруженных четырех объектов не привело к отождествлению их с каким-либо видом земных помех. Были отвергнуты и такие объекты, как спутники, — координаты открытых источников излучения не менялись ни в течение суток, ни изо дня в день. А это говорило о том, что источники излучения находятся далеко от Земли.

Открытие настолько поразило ученых, что было решено сохранить полученные данные в тайне до выяснения природы этих новых объектов. Почти полгода никто (даже сотрудники ближайшей радиообсерватории Джодрел Бэнк) не знал, что в Кембридже начаты исследования нового типа объектов. Первое сообщение о них появилось лишь после того, как астрономы поняли, что принимаемые сигналы не связаны с внеземными цивилизациями, и поэтому их изучение «вряд ли окажется вредным для человечества».

Уже предварительные измерения и расчеты показали, что пульсары — сравнительно близкие объекты, они находятся в пределах нашей Галактики. У астрономов, правда, существует свое собственное мнение о том, что такое «далеко» и что такое «близко». «Диаметр» нашей Галактики около 100 тыс. св. лет. Это, конечно, гигантская величина даже по сравнению с огромным расстоянием от Земли до Солнца, которое составляет 8 св. мин (не говоря уже о тоже неблизком расстоянии Земля — Луна, которое чуть больше световой секунды). Но в то же время радиотелескопы принимают сигналы из звездных миров, удаленных от нашей Галактики на расстояние 10 млрд. световых лет. Естественно, что по сравнению с такими расстояниями пульсары находятся совсем недалеко от Земли; почти что рядом.

Важное свойство пульсаров — сильная линейная поляризация излучения.

Поднесите натертую о шерсть гребенку к клочкам бумаги и убедитесь, что электрическое поле действует в определенном направлении. Точно так же существует направленность — поляризация— электрической составляющей радиоволн. В этом тоже легко убедиться опытным путем — попробуйте поставить диполь телевизионной антенны не горизонтально, а вертикально, как качество приема резко ухудшится. Потому что телепередатчик посылает сигналы с горизонтальной поляризацией — горизонтальной направленностью электрической составляющей электромагнитных волн. Обычно в объектах, за которыми наблюдает радиоастрономия, излучение создают электроны, хаотически движущиеся в разных направлениях. И поэтому в излучении таких объектов не преобладает какое-нибудь одно направление поляризации.

Каков же механизм генерации радиоимпульсов? Что собой представляет само излучающее тело, сам пульсар?

Для ответа на первый вопрос физика представляет ограниченное число возможностей. Мощность радиоизлучения пульсара столь велика (импульсная мощность — около 1022 Вт), а размеры объекта столь малы, что появление радиоимпульсов не может быть связано с независимым излучением отдельных электронов (как это бывает обычно у большинства астрономических объектов). Наблюдаемая мощность излучения может появиться только в двух случаях. Либо большое количество электронов колеблется синхронно, подобно тому как это происходит в антенне нашего земного радиопередатчика. Либо в пульсарах происходит нечто похожее на когерентное излучение в лазерах. И в том и в другом случае электроны при излучении должны двигаться со скоростями, близкими к скорости света.

Вопрос о том, что представляет собой пульсар как космическое тело, много сложнее. Первоначально обсуждалось несколько гипотез. Согласно одной из них пульсары — это белые карлики, т. е. самые плотные из наблюдаемых звезд. Вещество в них сжато настолько сильно, что оно, вероятно, больше похоже на твердое тело, чем на газ, несмотря на то что температура внутри звезды может доходить до сотен миллионов градусов. Радиус белого карлика — несколько тысяч километров, масса примерно такая же, как у Солнца, или несколько меньше.

Почти одновременно с гипотезой белого карлика были высказаны предположения, что пульсары — это нейтронные звезды — звезды, плотность которых много выше, чем у белых карликов, а радиус составляет несколько километров. Наконец, имелся ряд гипотез, в которых излучение пульсаров связывалось не с радиальными пульсациями, а с вращением какого-то тела вокруг своей оси или вращением одного тела вокруг другого. Здесь весьма интересна аналогия с импульсным радиоизлучением Юпитера Эти импульсы, правда, не имеют такой строгой периодичности, как у пульсаров, но все же движение по орбите спутника Юпитера довольно регулярно меняет интенсивность радиоизлучения самой планеты.

Своеобразным дополнением к докладу стали сообщения о том, как велись наблюдения за пульсарами на советских радиотелескопах. И сразу же после этих сообщений — общая дискуссия. Первым берет слово академик Я. Б. Зельдович. Он подходит к доске, и вскоре она покрывается наползающими друг на друга формулами. Ученый отмечает, что никакой полной теории явления пока, конечно, нет. И хотя кое-кто считает, что ее никогда не будет, можно все же говорить о путях, которые представляются разумными. На доске появляются ориентировочные расчеты, подтверждающие или отвергающие различные гипотезы. Цель и ход всех расчетов подробно поясняются.

Свое «особое мнение» о возможной природе излучения излагает горьковский радиофизик профессор В. С. Троицкий. Он полагает, что не следует исключать возможность искусственного происхождения сигналов, и приводит один «сильный довод»: импульсы очень выгодны для передачи информации. Используя определенные свойства среды, можно получить своего рода временную фокусировку, «схлопывание» импульсов на определенном расстоянии от излучателя. При этом уровень сигнала увеличится в миллион раз.

По поводу этой идеи в зале вспыхивает короткая дискуссия, своеобразный итог которой подводит академик В. Л. Гинзбург. Он замечает, что идея о внеземных цивилизациях заслуживает внимания только в связи с наступлением периода летних отпусков, поскольку теоретиков эта идея освобождает от необходимости думать и искать более простое объяснение открытого явления. А такое объяснение наверняка может быть найдено. Вот лишь один из возможных вариантов: превращение большой звезды в белый карлик сопровождается сильнейшей концентрацией магнитного поля — оно в сотни тысяч раз сильнее магнитного поля Земли. Такое сильное поле, по сути дела, «запирает» всю звезду, оставляя заряженным частицам лишь два узких выхода в полярных областях. Именно сквозь эти области выбрасываются огромные сгустки плазмы, напоминающие две антенны.

Следующий доклад посвящен нашему Солнцу. Этот объект сравнительно близок, но он так же, как и далекие пульсары, снабжает астрофизиков сложными проблемами. Одна из них — магнитные поля Солнца. То, что структура этих магнитных полей чрезвычайно сложна, общеизвестно. Но какова эта структура в деталях? Как изменяется? Каковы интимные механизмы участия магнитных полей в физических процессах на Солнце?

Наименьшая из самостоятельных магнитных областей Солнца — это магнитный узелок размером около 700 км. Следующий структурный элемент — супергранула размером около 30 тыс. км, средним временем жизни 20 ч. Недавно обнаружены еще более крупные элементы магнитной структуры — гигантские ячейки размером 400 тыс. км. Вся эта своеобразная иерархия магнитных областей должна завершиться структурными секторами, простирающимися более чем на миллион километров. Рассчитанный и экспериментально проверенный баланс магнитных потоков в активных областях Солнца показывает, что 37 % магнитного потока покидает активную область Солнца. То, что мы часто называем межзвездным или межпланетным вакуумом, — никак не пустота. Это пространство, где происходят сложные физические процессы с участием электрических и магнитных полей, где движутся и как-то взаимодействуют частицы.

Последний доклад на сессии посвящен именно процессам в межзвездной среде и в нем делается попытка представить себе некоторые из этих процессов, построить их математические модели. На черной грифельной доске появляются рисунки, уравнения, расчеты, описывающие рождение и смерть звездных миров или поведение электронов на окраине Вселенной.

К сожалению, простыми словами пересказать смысл этой работы сложно. И очень может быть, что содержание ее было достаточно глубоко понято только теми, кто непосредственно связан с проблемами теоретической астрофизики. Вместе с тем каждый, кто слушал доклад, даже посторонний человек, не имеющий прямого отношения к физике, наверняка испытал какое-то волнение, почувствовав силу и уверенность, характерные для нынешнего этапа познания Вселенной. Поистине могуч человек, сумевший своим разумом проникнуть в бескрайние просторы космоса и представить себе происходящие там процессы, которые природа, казалось бы, абсолютно надежно укрыла от нас.

Сессия закрыта… Но еще долго в разных концах зала, в фойе, коридорах будут идти шумные микродискуссии. Еще долго докладчики, пристроившись где-нибудь на подоконнике или на уголке стола, будут отвечать на вопросы коллег, выслушивать их замечания. И еще долго будет работать на науку главный эффект этого рядового дня физики — эффект общения.

А потом пройдут годы. На новых научных конференциях будут обсуждаться новые экспериментальные результаты, новые теоретические их объяснения. Получат дополнительные подтверждения, а значит, и более широкое признание, теории, которые еще недавно были объектом язвительных нападок. И неизбежно какие-то идеи, еще недавно привлекательные, будут отвергнуты, какие-то факты после более тщательной проверки будут признаны ошибочными. Так, например, потеряет всех своих сторонников идея искусственного происхождения радиоимпульсов, излучаемых пульсарами, и уже никто не будет говорить о пульсарах как о неких радиопередатчиках инопланетян. Через несколько лет после открытия первых четырех пульсаров будут обнаружены десятки подобных объектов, регулярно излучающих и радиоимпульсы, и световые импульсы, и импульсы рентгеновских лучей.

Тщательное их наблюдение приведет астрофизиков к выводу: самая вероятная модель пульсара — это быстровращающаяся нейтронная звезда, из которой благодаря ее собственному магнитному полю, подобно антенне, «торчат» два острых плазменных луча. Звезда быстро вращается, и идущий от нее радиолуч как бы периодически «бьет» по Земле. Поэтому-то мы принимаем излучение пульсаров в виде регулярно повторяющихся импульсов.

В делах житейских, когда оглядываешься назад, анализируешь свои ошибки или заблуждения, становится, честно говоря, немного обидно: ну почему бы раньше не заметить неточность, не догадаться о правильном решении? В делах научных, особенно в такой сложной области, как современная физика, редко появляется повод для подобных сожалений. Потому что путь к истине здесь лежит не только и, может быть, даже не столько через догадки, сколько через большую работу, нелегкие систематические исследования, через тщательно продуманные и тщательно выполненные эксперименты и теоретические модели, через честное, абсолютно откровенное обсуждение научных результатов.

Инженерия невидимых машин

Физики и химики в мельчайших подробностях представляют себе устройство многих машин микромира — молекул и атомов. Изучены, например, молекулы, которые меняют свою структуру и двигаются по определенным маршрутам, выполняя ватную работу „грузовиков“ в живом организме. Делаются попытки объяснить, почему все организмы построены только из „левых“ молекул. Открыты совершенно удивительные особенности поведения молекул при сверхнизких температурах.

Как известно, доктор Лэмьюэль Гулливер появился в сказочной Лилипутии в те времена, когда страна эта еще не очень далеко продвинулась по пути технического прогресса. Во всяком случае, самые просвещенные лилипуты со страхом и трепетом дикарей рассматривали огромные загадочные машины, обнаруженные у «человека-горы», — пистолет и карманные часы.

А попробуем представить себе другую картину: прямо из свифтовской Англии (парусный флот, дилижансы, кремневые ружья и несколько десятилетий до первой паровой машины Уатта) Гулливер попадает в страну лилипутов, где наука и техника находятся уже на современном нам уровне (спутники, телевидение, массовое производство автомобилей, телефон, кино, карманные приемники, самолеты). Путешественник ошеломлен бушующей вокруг него машинной вакханалией, и только бескомпромиссный рационализм хирурга уберегает его от мистики: Гулливер упрямо верит, что во всех чудесах Лилипутии нет никакого чуда. Более того, он пытается понять устройство и принцип действия лилипутских машин.

Но как это сделать? Каким образом проникнуть в поющую человеческим голосом черненькую коробочку размером с рисовое зерно или в небольшой металлический кубик, который, глотнув какой-то желтоватой жидкости, лихо мчит многоместные кареты по зеркальным лентам лилипутских дорог? Непонятные процессы… Невидимые детали… Непостижимая сложность…

Эта фантастическая картина в некоторой степени иллюстрирует проблемы, занимающие современных ученых, исследователей невидимого мира атомов и молекул. «В некоторой степени» потому, что задачи, которые стоят перед исследователями микромира, бывают намного сложнее, чем, скажем, разборка лилипутского мотоцикла грубыми гулливеровыми руками.

И дело не только в чрезвычайной малости машин-молекул, не только в огромном количестве деталей, работающих в таких машинах. Детали эти еще сложным образом взаимодействуют друг с другом, а главные их характеристики могут сильно меняться. Типичный случай: одинаковые атомы одинаковы только в изолированном состоянии, попав в молекулу, они могут стать совершенно непохожими. Атомы, как известно, объединяются в молекулы общими электронными оболочками, которые притягивают, привязывают друг к другу несколько ядер. В молекуле, в этом коллективе, для повышения общей устойчивости может произойти перераспределение личной собственности отдельных атомов — их зарядовой плотности, т. е., грубо говоря, реального заряда внешних электронных оболочек. Так, у атома водорода в свободном состоянии заряд электронной оболочки равен единице (вокруг ядра вращается один электрон, весь его заряд привязан к собственному ядру), а в молекулах в зависимости от того, с кем и как связан водород, его заряд может иметь самые разные значения — от 0,5 до 1,5.

Распределение зарядовой плотности в молекулах сильнейшим образом влияет на их химические свойства. Именно сильнейшим образом: перераспределение плотности заряда в пределах всего лишь нескольких процентов может в десятки, в сотни тысяч раз изменить химическую активность вещества. И чтобы представить себе, как работает молекула, как именно она участвует в тех или иных химических процессах, нужно знать, образно говоря, ее электрическую схему.

Но это еще не все. Еще нужно знать архитектуру молекулы, точные расстояния между атомами, точные углы между соединяющими их условными линиями. Нужно знать, как происходят конформационные изменения молекул — практически любая молекула может существовать в нескольких похожих архитектурных вариантах, как принято говорить, может находиться в нескольких конформациях и при этом довольно часто переходить из одной конформации в другую. Нужно иметь все эти сведения для всех типов взаимодействующих молекул и для молекул среды, где происходят взаимодействия. Нужно знать, как зависят характеристики молекул от «природных условий», и прежде всего от температуры. Нужно уметь мужественно встречать неожиданности и непривычности, объяснять факты, которые противоречат житейскому опыту и здравому смыслу, такие, скажем, как квантовые переходы электронов, их прыжки с одной орбиты на другую, минуя промежуточные положения (Гулливер в жизни не встречал машины сложнее часов, а должен разобраться в устройстве лилипутского цветного телевизора). Одним словом, необходимо пройти через многие трудные «нужно», чтобы понять, как устроены и как работают машины-молекулы.

Несмотря на все трудности, современные Гулливеры от физики и химии добились поразительных результатов в изучении сложных молекулярных структур и их взаимодействий. Вот несколько таких результатов в коротком и вольном пересказе, несколько примеров из многих возможных.

Примеры эти взяты из статей в научных журналах, и в конце каждого нашего рассказа названы авторы работы и ее официальное название.

Пример первый — молекула-самосвал. Скелетная схема молекулы антибиотика валиномицина очень напоминает цветок. В центре — ион калия (К+), его удерживают шесть «натертых шерстью янтарных палочек» — шесть электрических диполей, отростков молекулы, на концах которых сконцентрирован некоторый отрицательный заряд. Такая схема валиномицина соответствует случаю, когда молекула находится в среде со сравнительно высокой концентрацией положительных ионов, в частности ионов калия. Но стоит валиномицину перейти в другую среду, с меньшей концентрацией зарядов, как «цветок» раскроется — у молекулы появится возможность завязать прочные внешние связи, и для этого она пожертвует некоторыми своими внутренними межатомными связями. В итоге произойдет перераспределение электрического заряда в молекуле, исчезнут диполи, удерживавшие ион калия, и он вырвется на свободу. Но когда валиномицин вернется в прежнюю среду, то он вернется и к своей прежней конформации и снова сможет удерживать ион калия, втянув его в центр «цветка» прямо «с улицы».

Подобная конформационная перестройка валиномицина — это не просто виртуозные гимнастические упражнения. Валиномицин — грузовик, он перевозит ионы калия через клеточную мембрану, активно участвуя тем самым в жизнедеятельности клетки, участвуя в таинстве жизни. Хотя сам он, конечно, не более чем транспортная машина, машина-молекула. (Определение конформационной перестройки валиномицина. Академик Ю. А. Овчинников с сотрудниками. Институт биорганической химии им. М. М. Шемякина АН СССР.)

Пример второй — левые и правые машины. «Киральность» — термин старый, однако, кажется, еще не устоявшийся, иногда вместо него пользуются терминами «спиральность», «закрученность», «ручность». Введены эти термины для того, чтобы подчеркнуть, что два совершенно одинаковых, казалось бы, объекта могут иметь особые пространственные различия, быть как бы зеркальными отражениями друг друга. Могут, как принято говорить, иметь разную киральность. У человека две одинаковые руки разной киральности — правая и левая. Здороваясь, мы протягиваем друг другу руки одинаковой (правой) киральности.

Совершенно одинаковые по всем статьям молекулы также могут иметь разную киральность, как, скажем, совершенно одинаковые здания с совершенно одинаковыми, но направленными в противоположные стороны пристройками-флигелями. Эти одинаковые, но, так сказать, направленные в разные стороны молекулы называют понятно и просто — «левыми» и «правыми». Кристаллы из «левых» или из «правых» молекул были изучены еще великим Пастером. Но как поведут себя эти молекулы в жидкой фазе, в растворе, где они смогут свободно двигаться, объединяться или отталкиваться, демонстрировать свои симпатии и антипатии? Ответить на такой вопрос удалось только в самое последнее время, и обнаружилось при этом, что по некоторым важным показателям соединения из молекул одинаковой киральности имеют заметные преимущества перед точно такими же «лево-правыми» соединениями. Отсюда, может быть, начинается путь к объяснению необъяснимой пока тайны живой природы — все живое построено в основном из молекул одной («левой») киральности.

В то же время в неживой природе ни один из двух видов киральности не имеет преимущества. Вполне возможно, что рождение нашего «левого» живого мира — это не более чем результат случайности. В самых первых химических соединениях, ставших основой для зарождения и развития жизни, «левых» молекул оказалось чуть больше. И это в итоге определило победу «левых» соединений над своими «правыми» конкурентами: подобно снежной лавине, разрастался мир «левых» живых организмов, не попавших в гибельный процесс объединения «левых» и «правых» молекул. (Взаимодействия молекул различной киральности в растворах. Академик М. И. Кабачник, доктор физико-математических наук Э. И. Федин с сотрудниками. Институт элементоорганических соединений АН СССР.)

Пример третий — машины-молекулы при сверххолоде. Зажигая спичку или замораживая продукты в холодильнике, вы иллюстрируете один из основных законов химии — закон Аррениуса, который утверждает: скорость химических реакций увеличивается с ростом температуры. Из этого закона следует, что вблизи абсолютного нуля (—273,16 °C) все химические реакции вообще должны прекратиться. Но вот точная теория, расчеты, а затем и эксперименты, сначала качественные и, наконец, количественные, показали: никакого прекращения реакций нет; машины-молекулы, хотя и медленно, но продолжают работать в условиях предельного холода. Продолжают работать вопреки всем законам классической механики, но в полном согласии с «безумными» законами механики квантовой. Эксперименты, кстати, показали, что при сверхнизких температурах могут строиться большие сложные молекулы. А это дает повод думать о «холодной предыстории жизни», о том, что в безжизненном, холодном космосе миллиарды лет могли создаваться полуфабрикаты для будущих «теплых» живых систем. (Исследование химических реакций вблизи абсолютного нуля. Член-корреспондент Академии наук В. И. Гольданский с сотрудниками. Институт химической физики АН СССР; профессор А. Д. Абкин с сотрудниками. Физико-химический институт им. Л. Я. Карпова.)

Одна из особенностей этих трех примеров характерна и для большинства других, которые можно было бы привести, — полученными результатами исследователи во многом обязаны совершенству современных приборов и методов изучения молекул, таких, например, как метод ядерного магнитного резонанса, который позволяет уловить изменение зарядовой плотности на сотые доли процента.

И еще одна особенность, еще одна общая черта всех приведенных примеров. Чтобы яснее увидеть ее, есть смысл вернуться к началу нашего короткого рассказа, как говорят химики, «замкнуть кольцо».

Вполне вероятно, что кто-нибудь захочет подробно описать жизнь Гулливера в Лилипутии атомного века, углубить аналогию между его исследованиями лилипутской техники и нашими исследованиями невидимых машин микромира — атомов и молекул. Сюжет новых похождений знаменитого путешественника можно, разумеется, строить по-разному, но один элемент в него нужно ввести обязательно — нужно, чтобы судьба Гулливера каким-то образом зависела от его исследовательских успехов. Ну, скажем, так. На Гулливера готовится покушение, и чтобы сорвать его, нужно достаточно быстро разобраться в системе подрыва минных полей, окружающих жилище путешественника. Только подобный сюжетный ход может сделать нашу аналогию правдоподобной по самому важному показателю — по значимости результатов, полученных исследователями, потому что с инженерии машин-атомов и машин-молекул начинается точная наука биология, от успехов которой в огромной степени зависят наши урожаи, наше здоровье и долголетие, сама наша жизнь.

Контуры невидимки

Точный физический метод — рентгеноструктурный анализ — помогает расшифровать структуру сложнейших биологических объектов — белковых молекул.

Где-то в середине XVII в. в мире произошло событие, точнее, целая цепочка событий исключительной важности. Они, к сожалению, не вошли в школьные учебники, хотя, нужно думать, повлияли на судьбы цивилизации не меньше, чем восьмой крестовый поход или война Белой и Алой розы. Главный участник этих событий — Антони ван Левенгук из Амстердама, торговец и муниципальный служащий (основная профессия), оптик и натуралист (хобби). С помощью очень сильных самодельных линз — некоторые из них давали увеличение в 300 раз — он увидел живые клетки, бактерии, волокна стебля пшеницы, элементы крови. Одним словом, увидел невидимое.

В эти слова — «увидел невидимое» — нужно вдуматься. Они из той же хартии человеческого могущества, что и «поднялся в воздух», «ввел книгопечатание», «изобрел радио», «расщепил атом», «вышел в космос». Именно это «увидел невидимое» прорубило человеку окно в скрытый от него «по условию» огромный и удивительный микромир. Именно с этого «увидел невидимое» начались многие великие достижения современной физики, химии, биологии, медицины.

Невооруженным глазом можно видеть предметы размером до 0,1 мм. Микроскоп позволяет рассмотреть детали с размерами примерно до 0,0002 мм, т. е. до 2000 Å (ангстрем), но не меньше: оптический прибор просто не может четко воспроизвести более мелкие детали. Световые волны просто не замечают эту мелочь, огибают ее, подобно тому как морская вода без труда перекатывается через мелкие прибрежные камни. Поэтому дальнейшее продвижение в область невидимого, за рубеж 2000 Å стало возможным только потому, что исследователи заменили свет более коротковолновыми потоками (для мелкой ряби на воде и маленький камушек — препятствие) и разработали удивительно остроумные методы прощупывания невидимых объектов невидимым лучом с последующим колоссальным — в десятки и сотни тысяч раз — увеличением «картинки».

Один из таких методов — рентгеноструктурный анализ, созданный трудами многих выдающихся физиков и позволяющий в мельчайших подробностях увидеть детали кристаллов. Сущность метода: на кристалл направляют рентгеновские лучи; детали кристалла — молекулы, атомы — рассеивают их; в пространстве вокруг кристалла образуется сложная волновая картина; там, где рассеянные волны суммируются, появляются так называемые рефлексы — пучки с высокой рентгеновской яркостью; координаты «рефлексов» и их яркость в итоге зависят только от расположения деталей кристалла; измерив яркость и координаты «рефлексов», можно вычислить структуру кристалла, построить его точную модель.

В принципе происходит примерно то же, что и при образовании изображения в микроскопе. И здесь, и там есть источник излучения — в одном случае свет, в другом — рентгеновские лучи. И здесь, и там изображение строится из лучей, которые рассеивает наблюдаемый объект. Но в микроскопе «картинку» строят линзы, а для рентгеновских лучей линз не существует, и их роль берет на себя вычислительная машина. Благодаря очень короткой длине волны рентгеновского излучения — около 1 Å — этот метод позволяет увидеть даже отдельные атомы. Более того, с помощью рентгеноструктурного анализа можно получить не плоскую, а трехмерную картину, воспроизвести пространственную структуру кристалла.

Настоящим триумфом рентгеноструктурного анализа стала расшифровка структуры белков, из которых предварительно выращивали кристаллы (для того, чтобы можно было применить рентгеноструктурный метод). Кристаллы эти чрезвычайно сложны, ибо сложны сами белковые молекулы, они состоят из тысяч и десятков тысяч различных атомов. Первые работы по расшифровке структуры белка миоглобина выполнили около 30 лет назад английские биофизики М. Перутц и Дж. Кендрью. Эти работы были отмечены Нобелевской премией, они открыли новую страницу в молекулярной биологии. Уже через несколько лет в лабораториях мира рентгеноструктурными методами был изучен и ряд других белковых молекул.

В Институте кристаллографии им. А. В. Шубникова АН СССР впервые был проведен рентгеноструктурный анализ и построена пространственная модель леггемоглобина — белка с неизвестной ранее структурой. Работу выполнила группа, которую возглавил академик Б. К. Вайнштейн. Мы попросили исследователей рассказать о выполненной работе, ее значении, о планах на будущее. В публикуемой ниже краткой записи беседы отдельные ответы, высказывания, пояснения ее участников суммированы (разумеется, с их согласия), и рассказ ведется от имени коллективного автора, от имени всей группы исследователей.

Корреспондент. Вначале, если можно, хотя бы несколько слов о самом леггемоглобине… Где он встречается? Что делает? Что о нем было известно раньше?

Исследователи. Белок этот относится к тому же классу, что и хорошо всем известные гемоглобин и миоглобин. Но в отличие от всех других подобных белков он имеет не животное, а растительное происхождение, синтезируется и работает в растениях, а не в организме животного.

Молекула леггемоглобина сравнительно невелика — ее относительная молекулярная масса около 16 000, т. е. примерно в 8 тыс. раз больше относительной молекулярной массы водорода или в тысячу раз больше молекулярной массы кислорода. Молекулярная масса леггемоглобина в несколько раз больше, чем у некоторых «маленьких» ферментов, но во много раз меньше, чем у крупных белков.

Леггемоглобин пока обнаружен только в корневой системе бобовых растений, и появляется он там лишь после того, как в корнях поселяются бактерии, участвующие в связывании азота воздуха. Роль аналогичных белков в жизни животного изучена детально — они участвуют в транспортировке и хранении кислорода, в сложных химических превращениях, снабжающих организм энергией. Например, гемоглобин, сосредоточенный в красных кровяных шариках нашей крови, «загружается» кислородом в легких, разносит его по всему организму, двигаясь вместе с кровотоком. Миоглобин запасает кислород в мышцах. В каждом из этих белков есть так называемая гемогруппа (сокращенно гем) — сложное многоатомное соединение с атомом железа в центре. Гем осуществляет обратимое связывание кислорода: легко присоединяет его и в нужный момент легко отдает. Имеется гем и в леггемоглобине.

Корреспондент. В какой последовательности ведется расшифровка пространственной структуры белка? Каковы основные этапы этой работы?

Исследователи. Таких этапов два: получение высококачественных кристаллов белка и сам рентгеноструктурный анализ. Оба этапа достаточно трудоемки, занимают многие месяцы, оба они, особенно получение кристалла, включают множество очень ответственных вспомогательных работ, длинные цепочки тонких и точных подготовительных операций. Это, кстати, характерно практически для всех современных биохимических и биофизических исследований…

Корреспондент. Назовите, пожалуйста, некоторые звенья одной такой длинной цепочки… Чтобы можно было хотя бы схематично представить себе, «как это делается»…

Исследователи. Возьмем, к примеру, получение кристалла. Работа началась в поле, началась со сбора клубеньков желтого люпина. Кстати, леггемоглобин существует в клубеньках всего несколько дней: когда растение отцветает, он очень быстро разрушается. Клубеньки сразу же, прямо в поле, замораживались сухим льдом и в дюаровых сосудах доставлялись в лабораторию. Затем начался цикл выделения самого леггемоглобина. Все операции этого цикла перечислить и то трудно. Вот лишь несколько: измельчение клубеньков, центрифугирование, предварительная очистка раствора, очистка раствора от низкомолекулярных соединений с помощью молекулярного сита, разделение белков на несколько фракций с помощью целлюлозных ионообменников, электрофорез одной из фракций с применением молекулярных сит для отделения леггемоглобина от похожих белков. Все эти работы включают вспомогательные химические реакции, контрольные операции. Все они проводятся при температуре 4 °C, чтобы уберечь белок от теплового разрушения. В итоге было получено 2 г чистого леггемоглобина, из растворов которого выращивались кристаллики длиной до 0,5 и даже до 1 мм.

Чтобы вырастить хороший кристалл, нужны месяцы, и здесь тоже есть масса тонкостей и сложностей. Но все это, конечно, так же как и химическая очистка белка, лишь подготовка к главному— к самому рентгеноструктурному анализу…

Корреспондент. Почти как на космодроме — уйма второстепенной, казалось бы, работы, а мелочей нет… Ну а после того, как кристаллический белок получен и на него, наконец, направлены рентгеновские лучи, после этого дело идет спокойнее, проще?

Исследователи. К сожалению, нет. На этом этапе тоже выполняется много ответственных операций. Во-первых, это получение самой рентгенограммы кристалла.

Рентгенограмма кристалла в виде фотографии с большим числом симметричных ярких точек — это лишь вспомогательный документ, иногда контрольный, а иногда просто иллюстративный. Само же рентгенографическое исследование кристалла осуществляется без «посредников», без видимой картинки. Делается это так. Счетчик Гейгера с очень малым входным отверстием тщательна исследует пространство вблизи кристалла, определяет интенсивность рассеянных кристаллом рентгеновских пучков.

С помощью прецизионного механизма счетчик перемещается и «прощупывает» каждый «рефлекс», измеряет его рентгеновскую яркость. Результаты измерений сразу же вводятся в вычислительную машину. Она же, кстати, управляет счетчиком, наводит его на «рефлексы», предсказывает их координаты. Измерения проводятся при разных положениях кристалла, когда рентгеновские лучи падают на него под разными углами. Выполненная нами работа — это первая очередь определения структуры леггемоглобина, которая предусматривала анализ около тысячи «рефлексов» от самого исходного кристалла.

После исследования «чистого» кристалла в некоторые его участки обязательно включаются атомы тяжелых элементов (уран, ртуть), и все начинается сначала. В итоге была измерена интенсивность около 20 000 «рефлексов». Рентгенограмма кристалла С тяжелыми атомами дает дополнительную информацию, совершенно необходимую для последующего вычисления структуры белка. Включение тяжелых атомов — довольно тонкая операция. Кристалл погружают в определенные растворы солей и выдерживают в них довольно долго.

И еще одна особенность: под действием рентгеновских лучей кристалл портится, разрушается. Поэтому, начав работать с каким-нибудь кристаллом и желая выжать из него как можно больше информации, приходится в течение многих суток вести измерения непрерывно, в три смены, как, например, на производстве с непрерывным технологическим процессом.

Корреспондент. Вы назвали выполненную работу первой очередью исследований. Что должна представлять собой вторая очередь? Третья?

Исследователи. Первая очередь работы позволила определить структуру леггемоглобина с разрешением 5 Å. При этом воспроизведена общая архитектура молекулы, конфигурация ее белковой цепи, расположение гема и других основных блоков. Детали с размерами менее 5 Å мы пока не видим. Вторая очередь работы должна улучшить разрешение до 2,8 Å, третья очередь — до 2 Å и менее. В этом последнем случае можно будет воссоздать структуру молекулы вплоть до отдельных атомов. В ведущих лабораториях мира несколько белков уже изучено со столь высоким разрешением, и, думается, нам удастся решить эту задачу для леггемоглобина.

Корреспондент. А что для этого нужно? Чем именно определяется точность детализации модели?

Исследователи. Точность модели определяется объемом измерений дифракционного поля кристалла, т. е. количеством промеренных «рефлексов». Так, например, чтобы получить разрешение 2 Å, нужно измерить интенсивность не менее 100 000 «рефлексов».

Корреспондент. Леггемоглобин — ваш первый белок. Какие мысли и чувства вызывает именно это обстоятельство, именно факт «первости»?

Исследователи. Самые разные. Мы хорошо понимаем, что рентгеноструктурный анализ белков — уже давно признанная методика. И все же полученный результат доставил нам большую радость. Здесь можно продолжить аналогию с космодромом. Бесспорно, самые первые космические свершения занимают совершенно особое место. Именно потому, что они первые, потому, что это шаги в неизвестность. Но и каждый последующий шаг, каждый последующий запуск — второй, десятый, пятидесятый — это тоже непростое, нелегкое дело. И успешное его завершение не может не радовать. И еще: каждый такой запуск имеет свое собственное, самостоятельное значение. Так же, кстати, как имеет свое собственное научное значение и расшифровка структуры леггемоглобина.

Публикуя запись этой беседы, хочется сделать два примечания. Одно частное — через несколько месяцев после выполнения первого цикла работ исследователи полностью завершили работу по расшифровке структуры леггемоглобина «с точностью до атомов» — удалось изучить устройство молекулы с разрешением 2 Å.

Второе примечание относится к общим вопросам, связанным с изучением структуры белковых молекул, и в частности лег-гемоглобина. Эта работа затрагивает ряд фундаментальных биологических проблем. Например, проблемы эволюции живого. Эволюция, видимо, нелегко создавала такие сложные агрегаты, как молекула гемоглобина или миоглобина, долго налаживала их серийное производство в живом организме. Немало пришлось повозиться природе, чтобы свирепый химический хищник — кислород— под влиянием гема и самой белковой нити стал дрессированным, ручным. Чтоб он всякий раз не схватывался намертво с железом, как это делают атомы кислорода в свободном состоянии, а легко присоединялся бы к железу. И чтобы легко, по первому требованию уходил, когда, скажем, гемоглобин попадает в ткань, где несколько понизилось парциальное давление кислорода. Или когда миоглобин получает сигнал, что мышцам необходимо топливо, необходимы новые порции кислорода для выполнения той или иной работы.

Для чего нужны эти детали в гигантских биохимических машинах животного — понятно. Но что они делают в растениях? Как туда попали? И когда? Может быть, белковые молекулы, имеющие гем, были еще у общего предка растений и животных? И попали в бобовые растения «в порядке исключения», для выполнения какой-то особой, неизвестной пока функции? А может быть, растительный белок леггемоглобин появился самостоятельно на поздних стадиях эволюции растений? А похож он на гемоглобин в принципе по тем же причинам, по каким бывают похожими предназначенные для одной и той же цели машины, совершенно независимо разработанные в разных конструкторских бюро.

Примечательно, наверное, еще и то, что работа, в принципе биологическая, выполнена в институте, представляющем точные науки, — в Институте кристаллографии. Это явление типично для нашего времени. Можно смело сказать, что в последние десятилетия очень большое число открытий в области биологии, а может быть, даже большинство этих открытий, сделано благодаря успехам точных наук, прежде всего физики, химии, математики. От физиков, например, биологи получили такой совершенный и универсальный метод, как исследование тонких биологических превращений с помощью радиоактивных меток: в какое-либо вещество подмешивают небольшое количество его радиоактивного изотопа и, регистрируя физическими приборами излучение этого изотопа, следят за перемещением данного вещества, за его включением в те или иные клеточные структуры. Или, скажем, такие методы, как электронный парамагнитный резонанс и ядерный магнитный резонанс — ЭПР и ЯМР. С помощью установок ЯМР и ЭПР воздействуют на исследуемое вещество и при этом очень точно дозируют энергию воздействия, определяя условие резонанса— совпадение внешней энергии с энергией связи электронов в молекулах и атомах. Это позволяет с очень высокой точностью определять структуру молекул, в частности, молекул биологических. В общем же можно сказать, что исследование структуры белковых молекул методами рентгеноструктурного анализа, в частности исследование структуры леггемоглобина, — это лишь один из многих вкладов физики в успехи биологических наук.

Расшифровка структуры леггемоглобина могла бы, наверное, представить интерес для специалистов, изучающих связывание атмосферного азота в почве. Азот — ключевая проблема для земледелия, для животноводства. Достаточно вспомнить, что внесение в почву азотных удобрений может во много раз поднять урожайность зерновых культур: поле, которое давало 5—10 ц хлеба с гектара, после внесения удобрений может дать 40–50 ц!

Азот в почве — это хлеб, корма, это изобилие пищи и растительного сырья. Элемент, жизненно необходимый для развития всего живого, азот не может прямо из атмосферы попасть в растение, в живой организм. Азот попадает в них сложным путем и только через почву, где связыванием атмосферного азота заняты некоторые виды бактерий. Тем из них, что поселяются в корнях бобовых, для работы по добыванию азота необходим леггемоглобин. Но — сами бактерии его не производят, они получают этот белок из растения. А оно в свою очередь начинает вырабатывать леггемоглобин лишь после того, как в корнях появляются бактерии.

Тонкая, точно отлаженная биологическая машина, один из множества шедевров, созданных живой природой… Понять устройство такой машины, с тем чтобы, может быть, улучшить ее, это прежде всего значит в деталях выявить длинные цепочки взаимосвязанных химических превращений, выяснить устройство и функции отдельных их участков, отдельных молекул и даже молекулярных фрагментов.

Одна из ступеней высокой крутой лестницы, ведущей к такому пониманию, — расшифровка структуры леггемоглобина. После успешного завершения этой работы в различных институтах страны, в том числе и в самом Институте кристаллографии, рентгеноструктурными методами расшифрована структура многих других сложных биологических молекул.

Компьютер смотрит в микроскоп

Анализ микроскопических объектов с помощью электронной вычислительной машины помогает добывать качественно новую информацию о живой природе.

Наконец, наступил день, когда груз был доставлен адресату. На накладной рядом с «получил» и «сдал» поставлены подписи, и с огромного грузовика «Совтрансавто» снимают на асфальт, а затем вносят в вестибюль института несколько деревянных ящиков, аккуратно стянутых стальной лентой. На желтоватых стенках крупными буквами обозначено: «Получатель — СССР, Пущино-на-Оке, Институт биофизики АН СССР… Отправитель — ГДР, йена, Народное предприятие «Карл Цейс йена»… И изящный контур бокала на тонкой ножке, напоминающий: в ящиках находится нечто такое, к чему нужно относиться крайне осторожно. Это «нечто» — первые отправленные в нашу страну серийные образцы прибора «Морфоквант», разработанного совместно советскими специалистами и специалистами ГДР.

«Морфоквант» относится к сканирующим приборам для автоматического анализа микрообъектов, проще говоря, к приборам, которые сами исследуют картинку в поле зрения микроскопа и выдают результат в виде графиков или колонок цифр. Например, такой: «В поле зрения столько-то частиц такого-то размера, столько-то красных частиц, столько-то серых, такой-то процент круглых или продолговатых…» В некоторых научных исследованиях автоматические анализаторы могут дать большой эффект, причем не только количественный, но и качественный. То, на что лаборант затратил бы несколько томительных дней, делается в несколько минут, и появляется возможность анализировать огромные, недоступные ранее массивы информации, извлекая из хаоса «больших чисел» едва уловимые закономерности. Автоматические анализаторы начинают применять для решения практических задач, в частности в медицине, микроэлектронике, геологии, металлографии и, конечно же, в биологии — для изучения фантастического многообразия клеточных структур. Над созданием таких приборов работают многие фирмы Великобритании, Франции, США, Японии, ФРГ.

В нашей стране работы в этом направлении начались много лет назад по инициативе академика Г. М. Франка и главным образом в Институте биофизики, которым он руководил. В скором времени в работу включились исследователи и конструкторы некоторых институтов и заводов Риги, Ленинграда, Новгорода, Москвы. Был пройден нелегкий путь поисков и создана целая последовательность приборов, которую сегодня завершает «Морфоквант». Оригинальные идеи и технические решения — их новизну подтверждают десятки авторских свидетельств и патентов, полученных за границей, — сделали «Морфоквант» прибором, если можно так сказать, высокой квалификации, по ряду показателей пока еще никем не достигнутой.

Электронный глаз «Морфокванта» — фотоумножитель — рассматривает исследуемый препарат, точку за точкой; для этого двухступенчатая система прецизионных шаговых двигателей перемещает предметное стекло и часть оптической системы микроскопа с шагом от 0,1 до 3,2 мкм. Рассматривая, например, детали клетки по двум оптическим каналам с разными диафрагмами, удается автоматически осуществить очень точную фокусировку микроскопа. Подобным же образом можно нащупать границу объекта, обойти его контур и очень экономно записать координаты контура в память универсальной ЭВМ, которая входит в «Морфоквант». Кстати, ЭВМ сама управляет операцией обхода контура, а в дальнейшем анализирует геометрические или иные характеристики объекта, представленные сериями электрических сигналов.

Машина может рассортировать объекты (т. е. сообщить каких сколько) по их размерам на 120 групп. В частности, машина может рассортировать объекты по их оптической плотности; по длине периметра; по коэффициенту формы — отношению параметра к площади; оценить степень извилистости контура; габаритные размеры объекта — наибольшую длину и высоту; оценить его внутреннюю структуру, выявив и замерив области различной оптической плотности; определить площадь объектов разного цвета; исследовать структуру в разных участках светового спектра, т. е. связать структуру с цветом, а значит в итоге с химическими и физическими характеристиками. Все эти операции прибор выполняет четко, быстро (ошибка при измерении площади объектов не превышает 0,5 %, оптической плотности — 1 %) — за каких-нибудь четверть часа. «Морфоквант» может по довольно подробной программе исследовать 2–3 тыс. объектов.

Создание современного научного прибора и тем более организация его серийного выпуска — дело непростое и, скажем прямо, не очень-то заметное широкой публике. В то же время именно прибор, рабочий инструмент исследователя, нередко открывает путь к важному научному результату.

«Морфоквант», как и ряд его предшественников, созданных в нашей стране, уже записал в свой актив немало интересных практических результатов, в частности в онкологии, гематологии, а также в исследовании хромосом, имеющем очень важное значение для медиков и селекционеров. И конечно же, у этого серийного прибора, в котором в высокой мере реализуется требование века «автоматизировать исследования!», впереди большая и интересная научная биография.

Фантастическая электроника

Рожденная физикой твердого тела современная технология полупроводниковых интегральных схем позволяет разместить в миниатюрном кристалле десятки тысяч деталей вычислительной машины.

Есть немало творений техники, которым выпала счастливая судьба непосредственно служить миллионам людей. Почти всегда они входят в нашу жизнь робко, но потом становятся не просто привычными — становятся необходимыми, и уже непонятно, как это раньше можно было обходиться без них.

Прыгающие кадры старинной кинохроники напоминают о первых самолетах — неуклюжих этажерках из ткани и дерева. В начале века полет на аэроплане был героическим событием, собирал огромные толпы зрителей. Сейчас только Аэрофлот перевозит 100 млн. пассажиров ежегодно, и многие люди просто не представляют себе, как они будут добираться из Москвы в Хабаровск или даже в Сочи поездом. Другой пример — телевидение. Вспоминается, как лет тридцать назад в витринах магазинов стояли первые наши телевизоры и их цена была ниже себестоимости — нужно было помочь покупателям сделать трудный шаг в неизвестное. Но вскоре уже приходилось месяцами ждать очереди, чтобы купить телевизор, а сейчас в стране десятки миллионов телевизоров, они есть практически в каждой семье.

Сегодня в списке техники для миллионов — «…телефон, автомобили, часы, радио, книгопечатание, фотоаппараты и кинокамеры, электрическое освещение…» — появилась еще одна строка— «…электронная вычислительная техника…». Нет, нет, это не большие ЭВМ для научных исследований и управления производством, а малые, карманные вычислительные устройства, те, что принято называть микрокалькуляторами. Для первого знакомства с ними мы отправляемся в магазин № 61 Москультторга (Москва, Пушкинская ул., дом 23/8), где в широкой продаже модели отечественных микрокалькуляторов.

На правах покупателей заглядываем в инструкции по пользованию этими миниатюрными компьютерами, где, как обычно, суховато, однако же достаточно подробно рассказывается о самих моделях, их возможностях и некоторых технических характеристиках, приводятся многочисленные примеры решения тех или иных видов вычислительных задач. Микрокалькулятор «Электроника БЗ-18» и относится к так называемым инженерным вычислительным устройствам. Машина выполняет четыре действия арифметики над восьмиразрядными числами, т. е. на ее цифровом табло может появляться восьмиразрядный результат — число до 100 млн. (точнее, до 99 999 999). Операции с десятичными дробями ведутся с так называемой плавающей запятой: при вводе десятичной дроби вы ставите в нужном месте запятую, а затем калькулятор уже сам следит за ее положением и после каждого очередного вычисления располагает запятую в нужном месте.

Сам ввод информации в калькулятор предельно прост. На передней панели имеются небольшие кнопки с цифрами от 0 до 9 и знаками арифметических действий. Последовательно нажимая на них, вы даете указание, с какими числами какое действие нужно произвести, и затем, нажав кнопку со знаком <=>, практически мгновенно получаете результат.

Но этот калькулятор перешел Рубикон арифметики, его математическое образование шагнуло в тригонометрию и алгебру. «Электроника БЗ-18» умеет мгновенно возводить в квадрат и извлекать квадратный корень, в два приема возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы (десятичные и натуральные), тригонометрические функции. Все это не обращение к памяти, не воспроизведение справочных данных. Так, скажем, для вычисления синуса калькулятор сам по своей внутренней программе производит десятки арифметических операций, пользуясь известным разложением в ряд Тейлора.

Косвенный показатель того, что некоторые задачи, решаемые инженерным калькулятором, довольно сложны, — это время, которое он затрачивает на вычисления. Так, на сложение или вычитание двух восьмиразрядных чисел уходит около 50 мс (0,05 с), а на их умножение или деление затрачивается уже около 300 мс, на возведение в степень с высоким показателем — 1 с, а на вычисление арктангенса — 3 с. Когда видишь, как машина, которая только что мгновенно складывала огромные числа, тратит несколько секунд, чтобы выполнить какую-либо алгебраическую или тригонометрическую операцию, невольно задумываешься о той большой работе, которая идет внутри маленькой коробочки, прежде чем на ее индикаторе засветится результат.

Но об этом чуть позже. А пока отметим, что на индикаторе «Электроники БЗ-18» светятся яркие зеленоватые цифры. Этот индикатор — некоторое подобие телевизионной трубки, изображение на нем создают электроны, бомбардирующие люминесцентный экран. При продолжительной работе с микрокалькулятором пользуются небольшим, размером со спичечную коробку, внешним выпрямителем, который, кстати, подзаряжает внутренние аккумуляторы.

В памяти калькулятора помещается число π, и достаточно нажатия одной кнопки, чтобы ввести это число в какое-либо вычисление, скажем, умножить на я или разделить. В памяти хранятся и два других восьмиразрядных числа, причем одно из них можно хранить как угодно долго, извлекая его в нужный момент.

Инженерные микрокалькуляторы прошли отличную школу математического сервиса, они используют любую возможность, чтобы предоставить своему владельцу дополнительные удобства.

Так, в «Электронике БЗ-18» при вычислении тригонометрических функций можно задавать угол в градусах или в радианах, как удобнее, — для перехода от одной угловой меры к другой нужно лишь передвинуть небольшой переключатель; при извлечении какого-либо числа из памяти там остается копия этого числа на случай, если оно понадобится еще раз; в случае надобности можно мгновенно извлечь из памяти так называемый предыдущий оперант, например результат предыдущего вычисления, а затем вернуть его на место; выполняя серию операций с постоянным коэффициентом, совсем не нужно каждый раз вводить его значение, повторение этого коэффициента может происходить автоматически; в случае, если калькулятор не может произвести действие над введенными числами, на индикаторе зажигается особый предупреждающий сигнал «переполнение»; калькулятор может суммировать результат нескольких вычислений, производить накопление произведений и частных; может по довольно простой процедуре вычислять средние значения нескольких величин, дисперсию, среднеквадратичное отклонение и погрешность среднеквадратичного отклонения; умеет находить гиперболические функции, вычислять сложные проценты, преобразовывать прямоугольные координаты в полярные…

Математические способности инженерного микрокалькулятора в какой-то мере отражают удивительные достижения современной большой вычислительной техники. Пока на страницах некоторых изданий шли утомительные дискуссии о том, может ли машина мыслить, инженеры и математики работали, создавали конкретные электронные системы, умеющие решать сложные логические и математические задачи. Торжественным словом «мыслить» нельзя, конечно, разбрасываться направо и налево, но та работа, которую уже сегодня научились делать ЭВМ, бесспорно, раньше была монополией Человека Думающего.

Все, что делает ЭВМ, она делает, оперируя электрическими сигналами, оперируя сложными комбинациями импульсов тока, которые напоминают телеграфные точки и тире. В виде комбинаций электрических импульсов живут в машине цифры, команды, правила работы. Комбинации электрических импульсов рождаются, когда вы нажимаете кнопки ввода данных; комбинации электрических импульсов управляют работой индикатора вывода данных, зажигая на нем зеленые палочки-сегменты, из которых составляются нужные цифры. А между этими двумя событиями — вводом и выводом — стоят электронные схемы, которые производят с электрическими сигналами разные операции: складывают их и разделяют, пересылают из одного электронного блока в другой, сопоставляют с сигналами, записанными в память. И в этих действиях рождаются новые электрические сигналы, рождаются результаты вычислений, подобно тому как они появляются при перебрасывании косточек на счетах. Хотя, конечно, электронные вычислительные машины, даже самые простые, настолько сложны и совершенны, что их сравнение со счетами требует не просто оговорок, но и извинений.

Детальное знакомство с устройством отдельных узлов схемы «Электроники БЗ-18» — дело сложное и здесь вряд ли уместное. Можно лишь попытаться несколькими штрихами обрисовать упрощенную блок-схему калькулятора (рис. 1, 2 на цветной вклейке, примыкающей к с. 112), с тем чтобы получить самое общее представление о назначении его узлов и их взаимодействии.

Каждая цифра восьмиразрядного числа и каждый символ команды представлены в калькуляторе комбинацией из четырех электрических импульсов или пауз. Скажем, комбинация «импульс — пауза — импульс — пауза» соответствует девятке, а комбинация «пауза — пауза — импульс — импульс» — тройке. Генератор опорной частоты ГОЧ дает непрерывную очередь импульсов, некоторые из них затем гасятся, и таким образом формируются нужные комбинации из импульсов и пауз. Формируются они прежде всего при нажатии тех или иных кнопок ввода — блок управления вводом-выводом УВВ регулярно опрашивает кнопки, следит за тем, какая из них нажата.

Все введенные числа прежде всего попадают в оперативную память, в ОЗУ — оперативное запоминающее устройство. В нем тоже электронные схемы, их элементы могут находиться в одном из двух состояний — пропускать ток или не пропускать; это как раз и соответствует двум знакам машинного языка — импульсу и паузе. Из ОЗУ числа поступают на индикатор — так осуществляется контроль за правильностью ввода. Указание о нужной операции, которое также вводится нажатием кнопки, в итоге попадает в постоянную память — постоянное запоминающее устройство ПЗУ, где определенными электрическими соединениями навеки записано, что нужно делать для выполнения той или иной операции. Это «что делать» из ПЗУ в виде длинной серии сигналов, длинной телеграммы, поступает в управляющее устройство УУ, где формируется руководящее указание «как делать». Например, такое: «Прочитать в первом секторе ОЗУ число; саму запись числа стереть; прибавить к нему число, записанное во втором секторе ОЗУ, саму запись числа оставить; результат сложения записать в освободившийся сектор ОЗУ; результат передать также на индикатор…» Такая телеграмма попадает в арифметико-логическое устройство АЛУ, где уже и реализуется «Указание руководства» — производятся необходимые операции с электрическими сигналами, т. е. необходимые вычисления.

Наше ультракороткое описание блок-схемы калькулятора не должно создавать иллюзию ее простоты. Вот несколько цифр, которые в какой-то степени отражают сложность событий, происходящих в схеме: программы, записанные в ПЗУ, состоят из 1152 «слов» по 8 «букв», а каждая «буква» кодируется комбинацией из четырех импульсов-пауз; блок УУ может разослать другим блокам до 105 разных команд; при выполнении даже такой простой операции, как умножение двух восьмиразрядных чисел, отдельные блоки калькулятора обмениваются «телеграммами» в общей сложности из 10 000 «слов».

А вот другие цифры: электронная схема калькулятора «Электроника БЗ-18» содержит примерно 10 тыс. транзисторов, 8 тыс. резисторов, 1 тыс. конденсаторов и 25 тыс. соединительных проводников. Для сравнения заметим, что в транзисторном приемнике около 100 элементов, в телевизоре около тысячи.

Как же разместилось такое огромное число компонентов — около 45 тыс. — в маленьком, размером с записную книжку, корпусе? Как удается упрятать в него сотни приемников или десятки телевизоров?

Ответ на эти вопросы в коротком слове «БИС» — так сокращенно называют большие интегральные схемы, это совершенно уже фантастическое творение современной электроники.

Несколько лет назад автору этих строк случайно пришлось быть свидетелем того, как два бывалых радиоинженера, из тех, которых объемным телевидением, наверное, не удивишь, впервые рассматривали большую интегральную схему и повторяли при этом одно слово: «Фантастика… Фантастика!..» Это слово, наверное, лучше всего выразит и ваши чувства, когда, заглянув внутрь микрокалькулятора «Электроника БЗ-18», вы увидите там лишь несколько деталей. И узнаете, что все остальное, все эти «около 45 000 транзисторов, резисторов, конденсаторов, проводников» разместились на тоненькой кремниевой пластинке размером 5x5,2 мм. Вдумайтесь — полсотни телевизоров в одной клеточке арифметической тетради. Фантастика!

Прежде чем говорить о БИСах, несколько слов просто об интегральных схемах и даже, пожалуй, вообще о том, что есть схема в понимании специалистов по радиоэлектронике. Схема — это мир, где живут электрические сигналы, электрическая цепь, где они рождаются и умирают, усиливаются или ослабляются, суммируются или разделяются, словом, проходят самые различные виды обработки. Делают все это элементы схемы и их комплексы: транзисторы усиливают сигнал, резисторы ослабляют или выделяют, конденсатор реагирует на скорость изменения сигнала, двухтранзисторный комплекс — триггер — делит число сигналов на два. Несмотря на чрезвычайную сложность и огромное разнообразие, многие из схем, и прежде всего схемы вычислительных устройств, собираются всего из нескольких типов элементов, скажем, из десятка типов транзисторов, двух-трех десятков типов конденсаторов и резисторов, двух-трех типов диодов. Это первая реальность, сделавшая возможным создание интегральных схем.

А вот и вторая.

Совершенно недвусмысленное, казалось бы, выражение «…изготовить электронный прибор…» с некоторого времени приобрело два совершенно разных значения. Еще недавно оно означало, что изготавливаются какие-то детали, скажем, детали электронной лампы — металлические цилиндры, спирали, сетки, трубки, стеклянный баллон, цоколь, и затем эти детали собирают, соединяют, превращают в единое целое. Но вот лет тридцать назад физика твердого тела, академическая в общем-то наука, на основе глубокого исследования физических процессов в полупроводниках предложила практике новый вид усилительного электронного прибора — транзистор, аналог трехэлектродной усилительной лампы.

Справедливость требует, чтобы, задумываясь об истории создания транзистора, мы первым вспоминали нижегородского радиоинженера Олега Лосева, который еще в 1926 г., примерно за 20 лет до появления транзисторов, построил первый полупроводниковый усилительный прибор — кристадин. Один из американских радиотехнических журналов писал о работе Олега Лосева: «…генерирующий кристалл, как его назвал Лосев, призван совершать все то, что в настоящее время совершается катодной лампочкой». К сожалению, работы О. Лосева не получили развития, физика еще не была готова к тому, чтобы понять процессы в полупроводниковом усилителе.

С точки зрения конструктора, основа транзистора — это только одна деталь — полупроводниковый кристалл. И лишь технолог знает, что в этом одном кристалле фактически есть три разные части: эмиттер, база и коллектор, или в так называемых полевых транзисторах — исток, затвор и сток. Части эти могут создаваться разными способами, которые, однако, дают один и тот же результат — в полупроводниковый кристалл вводятся примеси, и в нем появляются отдельные участки с различными электрическими свойствами. Например, появляются зоны с разной концентрацией свободных электрических зарядов — отрицательных (это зона n от слова negativus — отрицательный) и положительных (это зона р от слова positivus — положительный). Эти зоны фактически представляют собой детали полупроводникового прибора, детали, созданные в целом, в одном кристалле, без его разрушения, без разделения на части. Вот так выражение «изготовить электронный прибор» получило новое значение.

Виртуозная технология, которой постепенно вооружалась электронная промышленность, сегодня позволяет формировать в кристалле почти все виды элементов электронных схем — диоды, транзисторы, проводники, конденсаторы (две примыкающие друг к другу зоны n и р, если подать на них определенное напряжение, становятся обкладками конденсатора), резисторы (точно дозируя количество примесей и размеры той области, куда они вводятся, можно создавать резисторы с самым разным сопротивлением). Это и есть та вторая реальность, на основе которой выросла интегральная электроника.

Теперь о тех причинах, которые заставили переходить к интегральным схемам, вдохновили науку и промышленность на решение этой чрезвычайно сложной задачи. Причин немало, но большинство из них связано с тем, что в радиоэлектронике часто называют «тиранией количеств». В двадцатые годы, когда детекторный приемник считался шедевром радиотехники, наиболее сложные электронные схемы состояли из десятков, максимум сотен элементов. Но постепенно радиоэлектронная аппаратура усложнялась и число элементов в одном аппарате резко увеличивалось— в среднем в 10 раз каждые 10 лет. Особенно быстро стало расти число элементов с появлением вычислительных машин, и сегодня схемы больших ЭВМ содержат многие миллионы элементов.

Увеличение числа элементов, если они представлены в электронном приборе отдельными деталями, влечет за собой немало трагических последствий. Из-за ненадежности межэлементных соединений резко падает надежность всего прибора. Растет масса, оказывается, например, что грузоподъемности самолета просто может не хватить, чтобы поднять все необходимое ему современное электронное оборудование, собранное из дискретных элементов — электронных ламп, резисторов, конденсаторов. Растут размеры и потребляемая мощность, страшно усложняется конструкция аппаратуры. Одним словом, если, опустив подробности, посмотреть на конечный результат, то окажется, что «тирания количеств» — это непреодолимое препятствие на пути прогресса радиоэлектроники, а вместе с ней и на пути прогресса многих областей современной техники.

Преодолеть это препятствие или по крайней мере заметно его отодвинуть позволили интегральные схемы.

Интегральная схема, как говорит само название, — это нечто обобщенное, просуммированное. А конкретно — это многоэлементный электронный блок, выполненный в виде единого целого. В частности, в виде полупроводникового кристалла, где последовательными технологическими операциями созданы и соединены друг с другом различные элементы схемы.

На рисунке 3 цветной вклейки очень упрощенно показана часть такой схемы. В нее входят транзистор Т2, два резистора R1 и R2, конденсатор С и несколько соединительных линий.

Некоторые этапы изготовления интегральной схемы иллюстрируются упрощенным рисунком 4, 1—15. После разработки самой электрической схемы (рис. 4, 1) следует создание топологии (рис. 4, 2), т. е. определение всех конфигураций и взаимного расположения тех зон кристалла, из которых будут образованы детали интегральной схемы, а также конфигурации соединительных цепей. Работа эта весьма сложна, и ведется она с помощью ЭВМ. Без ЭВМ не обходится и следующий этап — создание фотошаблонов (рис. 4, 3), с помощью которых разработанная топология воплощается в кристалле методами фотолитографии. Фотошаблон создается сразу на большое число одинаковых интегральных схем (рис. 4, 4), т. е. его делают многоэлементным. А затем на одном кристалле с помощью таких многоэлементных фотошаблонов создается большое число одинаковых «рисунков» — одинаковых интегральных схем. В заключение кристалл разрезают (рис. 4, 15) и каждую отдельную интегральную схему тщательно проверяют.

Образование отдельных деталей интегральной схемы в общих чертах осуществляется так. На кристалл наносят светочувствительный слой, так называемый фоторезист (рис. 4, 5), затем его засвечивают через фотошаблон (рис. 4, 6), проявляют, удаляют засвеченные участки (рис. 4, 7) и в образовавшиеся окна либо вводят примеси (рис. 4, 9), либо убирают в глубине этих окон какой-нибудь ненужный слой и в нем тоже вскрывают окна (рис. 4, 8), либо, наконец, убирают участки алюминиевого покрытия, формируя таким образом соединительные цепи сложной конфигурации (рис. 4, 11, 12).

Вот и опять слишком короткое описание создает, по-видимому, иллюзию этакой простоты или, может быть, даже примитивности технологического процесса. Но это, конечно, не более чем иллюзия. В подтверждение — несколько цифр и фактов.

Если в первых интегральных схемах в одном кристалле создавали всего несколько элементов, то теперь степень интеграции резко возросла, создаются схемы, которые содержат тысячи и десятки тысяч элементов. Это и есть БИСы — большие интегральные схемы: в них на 1 мм2 поверхности (это поверхность булавочной головки) может приходиться более тысячи элементов. Размеры отдельного элемента при этом измеряются тысячными долями миллиметра, их, естественно, можно было бы увидеть только в хороший микроскоп.

Допустимые погрешности при создании определенных зон в кристалле — это вообще ангстремы, единицы измерения, до недавнего времени почти не применявшиеся в технике. А количество вводимых примесей в этих процессах дозируется с точностью до миллиардных долей процента; здесь уже счет идет на атомы. С точностью до сотых долей процента поддерживаются тепловые режимы. Малейшая ошибка здесь чревата серьезными последствиями, потому что интегральные схемы не делают по одной, на кремниевой пластине их может разместиться несколько десятков.

По окончании технологического цикла для каждой схемы производят сотни контрольных замеров. Приведем еще одну цифру: на производственных участках фотолитографии допускается содержание в 1 м3 воздуха не более чем 3–4 пылинок диаметром до 0,5 мкм.

Достоинства интегральных схем не требуют, по-видимому, пояснений: это высокая надежность, малые габариты и масса, малая потребляемая мощность. И еще одно парадоксальное на первый взгляд достоинство интегральных схем: эти уникальные по своей сложности, по сути, невидимые изделия как бы специально созданы для автоматизированного производства.

В нашей стране серийно выпускается широкий ассортимент интегральных схем, в том числе БИСы. Все большими тиражами выпускаются и созданные на их основе разнообразные микрокалькуляторы. Немного, наверное, пройдет времени, и миллионы этих электронных помощников инженера, исследователя, экономиста выйдут на скромную свою трудовую вахту, незаметно привнося в наши дела и планы точность, четкость, порядок, эффективность. Мы привыкнем к ним, забудем, что когда-то исписывали вычислениями листы бумаги, теряли миллионы из-за какой-то арифметической ошибки или из-за того, что прикидывали на глазок там, где надо считать точно…

Мы привыкнем к своим карманным компьютерам, как привыкли к телефону, к часам на руке, к яркому электрическому свету в квартире. Привыкнем и перестанем замечать… И это будет несправедливо. Любуясь красками на экране цветного телевизора, или за час полета покрывая тысячу километров на десятикилометровой высоте, или нажимая клавиши электронного микрокалькулятора, мы должны хотя бы изредка вспоминать, какая изумительная техника и какой большой труд стоят за всем этим. И должны мысленно гордиться: «Велик человек!»

Труженики "нулевого цикла"

или рассказ о том, как извлекли из жидкого азота полупроводниковые лазеры, заставили их непрерывно излучать при комнатной температуре и переместили частоту излучения в диапазон видимого света.

Слова «нулевой цикл» — узаконенный строительный термин, он относится к сооружению той части здания, которая лежит ниже уровня земли, ниже нулевой отметки. Проще говоря, «нулевой цикл» — это закладка фундамента. Именно с него, с этого цикла, с этого комплекса сложных и трудоемких работ, начинается строительство любого объекта. Потом вырастают на прочном фундаменте этажи, появляются нарядные интерьеры, уютные квартиры, быстроходные лифты, и уже мало кто задумывается о том, с чего начинался дом.

Во всяком деле имеются свои «нулевые циклы», свои невидимые миру фундаментальные работы, истинное значение которых зачастую понимают лишь специалисты. Сейчас нам предстоит интересная встреча с группой ученых, которые сегодня работают на переднем крае физики полупроводников, создают фундамент для электроники завтрашнего дня. Это лауреаты премии Ленинского комсомола 1976 г. Иван Арсентьев, Петр Копьев, Вячеслав Мишурный и Валерий Румянцев. Для встречи с ними мы отправляемся в Ленинград, в ордена Ленина Физико-технический институт им. А. Ф. Иоффе Академии наук СССР, или, как его иногда коротко называют, Физтех. Наш конечный пункт — лаборатория контактных явлений в полупроводниках. Руководит ею лауреат Ленинской премии академик Жорес Иванович Алферов.

Известно, что все вещества можно разделить на две группы — проводники и диэлектрики (изоляторы): в проводниках есть свободные электрические заряды, а в диэлектриках свободных зарядов нет. Между проводниками и диэлектриками находится еще одна большая группа веществ, которые называют полупроводниками. В полупроводниках есть свободные заряды, но их во много тысяч раз меньше, чем, скажем, в меди или железе. Поэтому полупроводники сами по себе проводят ток значительно хуже, чем классические проводники — металлы.

Обратите внимание на оговорку «сами по себе» — от нее начинается путь к удивительным явлениям, которые как раз и определили интерес современной техники к полупроводниковым материалам.

Физики с виртуозной точностью научились производить с полупроводниками различные операции, которые можно объединить одним понятием — «легирование». Легирование есть не что иное, как введение различных примесей в чистый полупроводниковый материал. Эти примеси, даже если они в ничтожных количествах — миллионные и миллиардные доли процента, — радикально меняют свойства «самого по себе» полупроводника.

Действие примесей в самом упрощенном виде можно описать так: они занимают места в кристаллической решетке основного вещества; в результате такой замены в полупроводнике резко возрастает количество свободных зарядов, и по своим свойствам он заметно приближается к металлическому проводнику.

После введения некоторых примесей — их называют донорами — в полупроводнике появляются свободные электроны; на рисунках в популярных брошюрах их обычно изображают в виде этаких маленьких бегающих шариков или кружков с «минусом» в середине. Другие примеси — их называют акцепторами — создают в полупроводнике свободные положительные заряды; на рисунках их изображают тоже в виде шариков или кружков, но уже, конечно, с «плюсом» в середине. Причем в таком рисунке значительно больше искажается истина, чем там, где в виде шариков изображались свободные электроны. Дело в том, что свободных, подвижных частиц с положительным зарядом, с «плюсом», в полупроводниковом материале вообще нет. Их роль выполняют так называемые «дырки» — положительные заряды неподвижных атомов с недостающими электронами на орбите. Такой атом может перехватить электрон у своего соседа, и теперь уже тот станет носителем положительного заряда. В результате быстрого перескакивания электрона из атома в атом в полупроводнике, по сути дела, перемещается «дырка», т. е., по сути дела, движется положительный заряд.

Полупроводниковые материалы с донорными примесями называют полупроводниками n-типа, а с акцепторными примесями — полупроводниками p-типа. Главное волшебство начинается там, где в одном кристалле соприкасаются участки с электрической проводимостью разного типа. Такая область соприкосновения называется р-n-переходом (рис. 1).

Уже одиночный р-n-переход есть основа вполне законченного электронного прибора — диода, который пропускает ток только в одну сторону: только от зоны р к зоне n. Он делает то, что раньше поручали электровакуумному диоду — радиолампе с двумя металлическими электродами. А трехслойный «пирог» — кристалл с двумя переходами, т. е. со структурой р-n-р или n-р-n — это уже усилительный прибор, транзистор.

Основой традиционных полупроводниковых диодов или транзисторов всегда был однородный полупроводниковый кристалл — германий или кремний. В самом кристалле, как уже говорилось, имелись области с разными примесями, но основной материал оставался неизменным. Но существуют еще так называемые гетероструктуры, в которых не только создают области с разными свободными зарядами — электронами и «дырками», но и по мере выращивания кристалла меняют саму его основу, само вещество, из которого строится кристаллическая решетка. Начинают, на пример, выращивать кристалл из одного раствора, из арсенида галлия GaAs, а продолжают выращивание, заменяя частично или полностью атомы галлия на атомы алюминия (рис. 5, 7). Таким образом, гетеропереход — это контакт различных по химическому составу полупроводников, осуществленный в одном кристалле.

Для чего это нужно? Для чего простой однородный кристалл заменять сложными гетероструктурами? Конечно же, делается это ради определенных практических выигрышей. Создание гетероструктур есть принципиально новый способ управления физическими процессами, происходящими в полупроводниковом приборе. Очень отдаленно это напоминает создание сложных многоэлектродных радиоламп: чтобы управлять движением зарядов в лампе, улучшать ее усилительные способности, в баллон вводили дополнительные электроды — ставили дополнительные спирали и сетки на пути электронного луча, тормозили или ускоряли электроны электрическими полями, сжимали электронный поток своего рода отражающими пластинами. В полупроводниковый кристаллик не влезешь, чтобы как-то повлиять на движение зарядов в нем. Но зато тонкими технологическими приемами, созданием гетероструктур, можно влиять на физические свойства кристаллика в определенных его участках и именно таким способом добиваться нужных характеристик будущего прибора.

Уже с первых своих шагов физика полупроводников вступила в союз с оптикой, и в наши дни благодаря этому союзу техника получила немало прекрасных подарков, таких, например, как полупроводниковые фотоэлементы, превращающие световую энергию в электрическую, — из них, в частности, собраны панели солнечных батарей, которые кормят электроэнергией космические корабли. Или таких, как светодиоды, из которых собирают цифровые табло многих микрокомпьютеров. Или, наконец, полупроводниковые лазеры — предмет исследований нашей четверки молодых физиков.

Полупроводниковый лазер — это тот же диод. Или, если точнее, определенного типа полупроводниковый диод при определенных условиях может давать лазерное излучение. Когда диод включен в прямом направлении и пропускает так, то к р-n-переходу с обеих сторон движутся заряды: из зоны n — электроны, из зоны р — «дырки». В узкой области р-n-перехода они рекомбинируют, объединяются — свободные электроны занимают места в атомах с недостающими электронами. И каждый такой акт рекомбинации сопровождается выделением порции энергии, часто излучением кванта в видимой или инфракрасной области спектра. Частота (длина волны) излучения зависит от так называемой ширины запрещенной зоны данного полупроводника. Это настолько важная характеристика, что о ней стоит сказать несколько слов особо.

Электроны на орбитах атома могут обладать строго определенными запасами энергии, или, иными словами, могут иметь строго определенные энергетические уровни. Их принято отображать горизонтальными линиями на диаграмме уровней: чем больше энергия электрона, тем выше расположена линия (рис. 2).

Самые высокие — уровни внешних, валентных электронов, комплект этих уровней называют валентной зоной. Здесь слово «зона» не имеет ничего общего с районами кристалла, с его зонами n и р; просто два разных понятия названы одним и тем же словом «зона». Можно каким-то образом еще больше увеличить энергию электрона, но при этом он уже уйдет из атома, станет свободной частицей. Такие электроны как раз и участвуют в создании тока, их называют электронами проводимости. А комплект энергетических уровней этих электронов образует так называемую зону проводимости. Она, конечно, выше, чем валентная зона. И не просто выше — между валентной зоной и зоной проводимости всегда существует скачок; имеется некоторый диапазон энергетических состояний, в которых электрон в принципе не может находиться. Именно «в принципе» — это запрещено законами квантовой механики. Вот этот диапазон запрещенных состояний, запрещенных уровней и называют запрещенной зоной.

Энергия электронов, их энергетический уровень, измеряется в электронвольтах. В этих же единицах измеряется и ширина запрещенной зоны, т. е. различие энергетических уровней. Ширина запрещенной зоны определяется самим полупроводниковым веществом, его химическим составом и структурой.

Рекомбинация пары электрон — «дырка» — это, по сути дела, переход электрона из зоны проводимости в валентную зону. Энергия, которую теряет электрон, как раз и расходуется на излучение. И она, эта энергия, естественно, тем больше, чем выше энергетическая ступенька, с которой «спрыгнул» электрон. А чем большая энергия вложена в квант излучения, тем выше его частота, короче длина волны.

В зоне проводимости, так же как и в валентной, много близких уровней, и из области p-n-перехода, где рекомбинируют электроны и «дырки», идет излучение разных, хотя и довольно близких, частот. Излучение, разумеется, появляется лишь тогда, когда через р-n-переход идет ток, и расходится оно по кристаллу во все стороны. Пока это еще не лазер; так работает, скажем, светодиод: создал ток, получил свет. Чтобы получить лазерный луч, т. е. монохроматическое, когерентное излучение, нужно выполнить целый ряд особых условий. Главное из них — необходимо добиться, чтобы многие электроны одновременно излучали на близких частотах. На очень близких. А для этого в свою очередь нужно, чтобы большое количество электронов поднялось на очень близкие энергетические ступеньки в зоне проводимости. И итог, к сожалению, не очень радостный — для получения лазерного излучения из р-n-перехода нужно пропустить через него большой ток (рис. 3). Этот ток не что иное, как ток накачки, он поставляет в р-n-переход сами излучатели, поставляет электроны и «дырки».

В огромном семействе лазеров полупроводниковые лазеры выделяются несколькими неповторимыми особенностями. В них, например, легко управлять интенсивностью излучения, модулировать его, для этого достаточно просто менять силу тока через переход; эти лазеры миниатюрны, только они пока могут на равных войти в современную электронику, где размеры деталей измеряются миллиметрами и микронами.

Идея полупроводниковых лазеров появилась лет двадцать назад, на заре квантовой электроники, огромный вклад в ее реализацию внесли советские физики, главным образом в Москве, в Физическом институте им. П. Н. Лебедева, и в Ленинграде, в Физтехе. В течение сравнительно короткого времени были найдены десятки полупроводниковых материалов для лазеров, созданы конкретные приборы. Однако долгие годы оставался практически неустранимым главный недостаток приборов — необходимость большого тока накачки. Из-за этого, в частности, лазеры, работающие в непрерывном режиме, приходилось сильно охлаждать, обычно до температуры жидкого азота (—196 °C). И именно идея гетеропереходов открыла путь к резкому снижению тока накачки.

В полупроводниковом лазере с простейшей гетероструктурой одна из областей кристалла, скажем зона р, образована из двух разных веществ (рис. 5). Причем вещество, которое находится дальше от р-n-перехода, имеет большую ширину запрещенной зоны. И благодаря этому оно как бы отталкивает в сторону р-n-перехода электроны, которые за счет диффузии неизбежно пролезают на чужую территорию. В более сложной структуре еще и вещество зоны n подбирают с таким расчетом, чтобы в нее за счет диффузии не протекали «дырки», В результате в узкой области самого перехода «бесплатно» повышается концентрация электронов и «дырок», а значит, уже нужен меньший ток для накачки лазера. И появляются гетеролазеры, дающие непрерывное излучение при сравнительно высокой температуре, вплоть до комнатной и выше. Впервые в мире такие лазеры были созданы в Физтехе в 1969 г.

Это только просто говорится «кристалл образован из двух разных веществ». В действительности же стыковка двух веществ в одном кристалле для лазера — дело очень сложное. Прежде всего нужно с высокой точностью согласовать постоянную решетки— расстояние между атомами исходных веществ (рис. 4).

Если постоянная решетки будет различаться хотя бы на несколько сотых долей ангстрема, то никакого лазера не получится, все излучение погибнет внутри кристалла, на его внутренних дефектах. Кроме того, должны быть подобраны температурные и оптические характеристики материалов. Переход от одного материала к другому должен сопровождаться определенным изменением ширины запрещенной зоны — в этом-то и смысл гетероперехода. Причем запрещенная зона активной области должна обеспечивать заданную длину волны излучения. Кстати, именно эта сторона дела была предметом исследований героев нашего повествования.

Дело в том, что первые гетеролазеры излучали в инфракрасной и красной областях — запрещенная зона излучающего вещества, как правило, получалась довольно узкой. И задача ставилась так: создать гетероструктуру с более широкозонной излучающей областью. Работы велись с трехкомпонентными твердыми растворами соединений АВ, в то время уже традиционными; обозначение А3B5 говорит о том, что в соединение входят элементы третьей и пятой групп таблицы Менделеева, например фосфор и индий (InP) или галлий и мышьяк (GaAs). Твердый раствор — это, по сути дела, гибрид двух кристаллов; он выращивается из расплава, в котором есть компоненты и одного, и другого. А характеристики гибрида зависят от соотношения этих компонентов (рис. 6).

Поиски новых материалов для гетероструктур — чрезвычайно трудоемкая экспериментальная работа. Ведется она, разумеется, не вслепую, каждый новый результат анализируется с позиций тонкой теории полупроводников, из него извлекаются какие-то полезные выводы для следующих проб.

Исследование сложных трехкомпонентных растворов привело к парадоксальному, казалось бы, выводу: нужно еще больше усложнить систему, от трех веществ перейти к четырем. Работать с четырехкомпонентной системой, конечно, сложней, чем с трехкомпонентной, — резко возрастает число возможных комбинаций исходных веществ. Но одновременно и больше возможностей для согласования различных областей сложной гетероструктуры. Именно сделав трудный шаг к четырехкомпонентным твердым растворам и начав, по сути дела, новый раунд исканий, молодые физики в итоге добились успеха — созданные ими гетероструктуры дали лазерное излучение и сдвинулась, наконец, вверх сама частота излучения — удалось получить оранжевый лазерный луч и даже зеленый.

И еще один результат — о нем рассказывает Жорес Иванович Алферов:

— Работа, удостоенная премии Ленинского комсомола, не просто находится на передовых рубежах мировой науки, результаты работы на ряде участков далеко продвинулись за эти рубежи. Выполненные в условиях жесткой конкуренции с крупными научными центрами США и Японии, эти исследования дали нашей стране лидирующее положение в одной из важных областей физики и технологии полупроводниковых приборов. Хочется особо отметить, что методы исследований и технологические приемы были получены самими молодыми физиками, а не их старшими товарищами. И таким образом, важным результатом всей этой работы нужно, наверное, считать рождение четырех серьезных исследователей со своим научным почерком — исследователей, умеющих принимать самостоятельные решения и брать на себя ответственность за их результаты.

2:0 в пользу телевизора

Успехи микроэлектроники позволили создать приставку к телевизору, которая превращает его экран в своего рода спортивную площадку и позволяет вам, не выходя из комнаты, играть в „хоккей“, „теннис“ и другие телевизионные игры.

Очень похоже, что телевизор — это размноженное миллионными тиражами чудо радиотехники и электроники — осваивает новый развлекательный жанр и тем самым выигрывает еще один раунд в борьбе за наш досуг. Речь идет о домашних телевизионных играх, в которых экран телевизора, полностью отключившись от программ, прибывающих из эфира, становится ареной очень забавных состязаний, таких, например, как «теннис», «хоккей», «футбол». Играете вы в них со своим сидящим рядом партнером, и это развлечение чем-то напоминает настоящий теннис или настоящий хоккей. С той, конечно, разницей, что не нужно бегать и прыгать, ударять клюшкой или ракеткой, не нужно преодолевать усталость, утирать соленый пот с лица и в борьбе за победу выкладывать свои физические силы. Все атрибуты телевизионной игры — хоккейные ворота или теннисная сетка, мяч, шайба, клюшки, ракетки, границы поля — в виде некоторых условных фигурок и линий появляются на телевизионном экране, и, сражаясь с противником, вы ударяете «ракеткой» по «мячу», двигая для этого рычажки или поворачивая ручки.

Чтобы читателю легче было представить себе, что такое домашние телевизионные игры, попробуем более или менее подробно описать одну из них — простейший теннис. (Мы, пожалуй, больше не будем употреблять кавычки, иначе они просто заполонят эти страницы; все называемые дальше спортивные игры и предметы спортивного инвентаря — это не более чем условность.)

Игра осуществляется с помощью небольшой, размером с книгу, приставки, от которой идет кусок кабеля со штекером на конце. Этот штекер включается в антенное гнездо телевизора; сама телевизионная антенна при этом, конечно, вынимается из гнезда. На приставке несколько ручек управления, в том числе две ручки, поворотом которых игроки двигают по экрану свои ракетки.

Телевизор включен, нажата клавиша включения приставки, и на экране сразу же появляются две горизонтальные тонкие линии— границы игровой площадки (рис. 2, а). В середине площадки проходит вертикальная линия — это сетка. Справа, у самого края площадки, небольшой, длиной 3–4 см, вертикальный прямоугольник — это наша ракетка. А у левого края площадки такая же ракетка противника.

Вверху по обе стороны от сетки две цифры — это счет. Пока, конечно, счет 0:0, игра еще не начата.

Ну что ж, начнем, пожалуй… Нажимаем соответствующую клавишу приставки, и на экран выплывает яркая белая точка — мяч. Он быстро летит по прямой линии слева направо, перелетает сетку (точнее, проходит сквозь нее — все ведь происходит на плоскости) и движется уже по нашей половине поля куда-то вправо-вниз… Нам нужно быстрее повернуть ручку, переместить свою ракетку вниз и отбить мяч (рис. 2, б)… Кажется, успели — мяч отбит и летит в сторону противника (рис. 2, в)… Теперь уже ему, противнику, нужно вовремя переместить ракетку в предполагаемую точку встречи с мячом… Но противник перестарался — он слишком высоко поднял ракетку, мяч проскочил мимо нее, ушел за пределы площадки (рис. 2, г), и индикатор счета сразу показал 1:0 в нашу пользу. Ура!

Мяч снова в игре, он влетает на площадку в направлении проигравшего… На этот раз противник успевает, отбивает мяч, и тот опять летит на нас, летит вправо-вверх. Ситуация знакомая — быстро поднимаем ракетку (рис. 2, д)… Но что это? Мы, оказывается, просчитались — не учли, что мяч шел под очень большим углом и из-за этого ударился о верхнюю границу площадки…

По правилам данной игры мяч отражается, отлетает от горизонтальных границ поля (обычно вертикальных границ вообще нет, и мяч может легко уйти, но только влево или вправо, а вверх или вниз не может), резко поворачивает вниз, и мы уже не успеваем подставить ракетку (рис. 2, е)… Ничего не поделаешь — 1:1.

Современного человека окружает огромное множество самых разнообразных машин, приборов, аппаратов, и, конечно же, невозможно знать, как все они устроены, как работают. Невозможно и не обязательно. Есть немало фотографов-любителей, которые делают прекрасные слайды, хотя и не знают, как образуется цветное изображение на обратимой пленке. И немало шоферов-любителей, которые прекрасно водят машину и при этом знать не хотят, что происходит, когда нога нажимает педаль сцепления. Ну а без знания заэкранных секретов телевизионной игры наверняка можно прожить: чтобы точно двигать ракетку, совсем не обязательно понимать, как именно эта ракетка нарисована на экране и как перемещается, как двигается мяч, ведется счет, зажигаются цифры.

И все же в расчете на пытливого читателя, на возможные вспышки любопытства мы уделим этим процессам немного внимания. Совсем немного. А попутно заметим: в телевизионных играх электроника использует свои классические методы и сломы, знакомство с ними может пригодиться при встрече с техникой, далекой от развлечений.

Начнем с описания двух простейших опытов. Один из них вы, наверное, уже наблюдали или даже непреднамеренно проделывали сами: если вблизи телевизора включить электробритву с моторчиком, например «Харьков», то на экране замелькает множество черных и белых пятен и пятнышек. Второй опыт следует проделать специально — он очень прост и совершенно безопасен. Вставьте в антенное гнездо телевизора кусок провода (рис. 1) и набросьте его на включенный транзисторный приемник — на экране появятся замысловатые узоры, прямые и волнистые линии, темные и светлые пятна. Если поворачивать переключатели диапазонов или вращать ручку настройки приемника, то узоры эти придут в движение, а при некоторых положениях ручки настройки они остановятся и будут оставаться в сравнительно устойчивом состоянии.

Теперь вывод: посторонний электрический сигнал, попав в телевизор, может создавать на экране какие-то элементы картинки. Почему мелькает экран, когда рядом работает бритва? Потому, что искрит коллектор ее моторчика, в процессе искрения в цепи резко меняется ток, резкие электрические всплески тока каким-то образом проникают в телевизор (либо через сеть, либо прямо через антенну) и именно они, эти незваные электрические сигналы, поочередно создают на экране бессчетные блики. Примерно то же самое происходит и в опыте с приемником. Практически все современные приемники — это супергетеродины, у них внутри имеется собственный вспомогательный генератор — маломощный гетеродин. Если приблизить приемник к антенне телевизора, то в нее попадет сигнал гетеродина — слабый меняющийся ток. Подобно трамвайному «зайцу», он доберется до конечной станции — до управляющего электрода кинескопа, а всякий сигнал на управляющем электроде — это светлое или темное пятнышко на экране; именно на этом основано создание картинки при нормальной телепередаче.

Рисование на телевизионном экране с помощью синтетических сигналов известно давно. Вспоминается, как лет 10 назад в журнале «Радио» была описана приставка, которая, используя оригинальный способ электрического рисования на экране, превращала телевизор в осциллограф. В этой приставке, кстати, уже в готовом виде были схемные решения, которые сейчас встречаются во всех телевизионных играх. Другой пример. Телецентры в паузах передают в эфир неподвижные картинки, например задернутый занавес. Иногда такой занавес передается традиционным способом (телекамера смотрит на настоящий занавес и посылает его изображение нам), а иногда — от специального «генератора занавеса». Он вырабатывает определенные серии электрических сигналов, которые через телепередатчик приходят в телевизор и рисуют на его экране. Никакого настоящего занавеса и в помине нет, мы видим «полотнище», созданное виртуозом-генератором. И наконец, еще один представитель электронной живописи — дисплей, устройство, где на телевизионном экране с помощью серии электрических импульсов рисует и пишет компьютер, сообщая результаты своих размышлений.

От проделанных простейших опытов до принципов рисования в телевизионной игре остается буквально несколько шагов. Прежде всего попробуем понять, чем определяется место появления светлых или темных точек на экране. Электронный луч кинескопа быстро прочерчивает экран горизонтальными строками и, медленно смещаясь вниз, заполняет в итоге весь кадр. Движением луча управляют два пилообразных напряжения — строчное и кадровое (рис. 3). Они меняются равномерно, линейно и постепенно подтягивают рисующий луч к своим отклоняющим пластинам (катушкам). Потом пила обрывается и луч возвращается в исходное состояние.

А еще есть в кинескопе управляющий электрод, он управляет интенсивностью электронного луча, т. е. яркостью экрана. Если на управляющий электрод на мгновение подать «минус», т. е. подать импульс отрицательного напряжения, то оно как бы оттолкнет электроны, ослабит луч и на экране появится темная точка. Кратковременный «плюс», наоборот, ускорит электроны, электронный луч станет интенсивнее, и появится светлая точка. В каком месте экрана вспыхнет точка? Это зависит от того, в какой момент появится импульс. Если выпустить его на арену в начале кадровой пилы, то мы увидим точку вверху, а если в конце пилы — внизу; если импульс появится в начале строчной пилы, точка будет слева, если в конце строчной пилы — справа.

Следующий шаг — посмотрим, как можно поставить точку в нужном нам месте. Предположим, что у нас есть генератор импульсов, которым на равных управляют сразу два руководителя, противодействующих друг другу (в электронных схемах это осуществляется очень просто и протекает без эксцессов). Один из них — пилообразное напряжение строчной развертки U0 (рис. 4), другой — постоянное напряжение Uз, которое можно менять поворотом ручки переменного резистора (реостата). Схема построена так, что импульс появляется в момент, когда оба «руководителя» дают одинаковые указания — когда меняющееся напряжение строчной пилы U0 становится равным установленному нами поворотом ручки постоянному напряжению Uз. При этом, конечно, чем более высокий порог постоянного напряжения мы установим, тем позже пила U0 достигнет этого порога, тем позже появится импульс и тем правее окажется на экране точка. Работу этой схемы можно проиллюстрировать такой аналогией. На одной чаше весов стоит гирька, на второй — стакан, который медленно наполняется водой. Наступит момент, когда вес воды превысит вес гирьки и весы «сработают». И конечно, чем больше вес гирьки, тем позже произойдет такое срабатывание.

Пилообразное напряжение, которое помогает в нужный момент выдать импульс (подобно тому как будильник «выдает» звонок), может быть взято прямо от генераторов развертки или же должно быть жестко с ними синхронизировано — только в этих случаях точка на экране не будет дергаться. Чтобы можно было разместить точку в любом месте экрана, обычно создают два импульса — один от строчной пилы, другой от кадровой. Импульсы эти пропускают через схему совпадений, и точка появляется как бы на пересечении двух линий — вертикальной и горизонтальной. Ракетки в нашем теннисе двигаются только вверх-вниз, и поэтому к строчной пиле они намертво привязаны в одном месте. Чтобы управлять ракетками, достаточно менять время их появления, отсчитанное по кадровой пиле, т. е. одним переменным резистором менять только одно постоянное напряжение.

Намного сложнее управлять полетом мяча, как правило, его нужно перемещать и вверх-вниз, и влево-вправо. И при этом следить, чтобы, попав в точку, соприкасающуюся с ракеткой, мяч не пошел дальше. Чтобы он отскочил от ракетки. И притом под определенным углом. И чтобы он отскакивал также от горизонтальных границ площадки. И не отскакивал от вертикальных границ. Чтобы он проходил через них за пределы площадки. А потом возвращался. И опять под определенным углом…

Ну и задачи… Кто может их решить? И каким образом?

Но позвольте: кто вообще двигает мяч по площадке? Ведь сами игроки управляют только ракетками…

Движение мяча, все его отскоки, исчезновения, появления, как и множество других важных дел, осуществляет самый главный блок телевизионной игры — вычисляющее устройство (рис. 5).

Его работу в предельно упрощенном виде можно описать так. В этом блоке все начинается с дирижера. Это вспомогательный тактовый генератор, он выдает бесконечные пулеметные очереди импульсов высокой частоты — обычно миллион импульсов в секунду. Если бы все они попали на управляющий электрод кинескопа, то на экране появился бы монотонный «горошек»— тысячи точек, расположенных ровными рядами. (При существующем стандарте — 625 строк — на экране в принципе можно поставить около 300 000 точек, но в простейшей телевизионной игре такая детализация картинки не нужна.) На пути к кинескопу тактовые импульсы проходят через основные элементы вычисляющего устройства — счетчики импульсов, собранные из цепочек триггеров, и логические элементы, умеющие рассуждать таким примерно образом: «Если ко мне на вход придут одновременно 573-й и 826-й импульсы, зажгу точку…» Или: «Если 128-й импульс появится вместе с 2593-м, не зажгу точку…» Счетчики и логические элементы соединены между собой строго определенным образом, они работают по заданной программе. В итоге из ровного частокола импульсов остаются только те, которые в соответствии с правилами игры и игровой обстановкой в нужном месте экрана высвечивают мячик. А в следующий момент с учетом того, какие точки светились раньше, мячик передвигается в следующую точку траектории. Вычисляющее устройство, сформировав необходимые наборы импульсов, рисует границы площадки, ведет счет.

Обо всем этом, конечно, лишь рассказывать просто. Чтобы вести даже простейшую игру, нужны вычисляющие устройства с сотнями схемных узлов, состоящие из тысяч элементов — конденсаторов, транзисторов, резисторов, диодов. Если бы такой вычисляющий блок создавался лет двадцать назад и собирался из отдельных деталей, то он занял бы большой шкаф. Только интегральные схемы сделали телевизионную игру реальностью — все ее управляющее устройство вмещается сейчас в кремниевой пластине размером с клеточку арифметической тетради.

Вычисляющее устройство телевизионной игры — это самый настоящий компьютер, хотя его и не принято так называть. Не принято скорее всего потому, что уже родилось новое поколение игр, в которых имеется программируемый процессор — главный вычисляющий блок ЭВМ. Процессор позволяет резко расширить ассортимент развлечений, усложнить условия игры и даже выполнить некоторые полезные работы. Так, в одной из моделей процессор дает возможность рисовать на экране цветными «карандашами» и даже сам рисует орнаменты и несложные мультипликации. В другой модели процессор вычисляет и записывает на экране оптимальную диету с учетом вашего веса — желаемого и реального. Иногда программа вводится в игру (теперь ее уже и не очень удобно так называть) с магнитной пленки, со стандартной магнитофонной кассеты. Причем программ может быть огромное множество, как говорят, все зависит от фантазии разработчика. На смену простейшему теннису уже приходят автомобильные гонки, танковые и морские сражения. В волейболе мяч летит по сложной кривой и, подобно настоящему мячу, меняет скорость в процессе полета; появляется возможность давать противнику фору, уменьшая, например, размеры своей ракетки. Правда, и простейший теннис можно несколько разнообразить: уменьшать обе ракетки, увеличивать скорость мяча, менять угол его отражения.

Телевизионные игры уже выпускаются, и каждый может приобщиться к домашнему телевизионному спорту. Хочется верить, не в ущерб настоящему теннису или волейболу, не в ущерб общению с природой и друг с другом. Так сказать, натуральному общению, без участия электроники…

Отличный мастер ТМО

В природе и в машинах ватную роль играют процессы теплообмена и массообмена, их детальное изучение нередко открывает новые возможности технического прогресса.

По-разному человек осваивал, ставил себе на службу природные явления, физические процессы. В разное время наталкивался на них, по-разному реагировал на свои открытия. Возьмем, например, электричество. Возможно, что Фалес Милетский действительно был первым, кто заметил его, и, значит, всего каких-то две тысячи лет назад состоялась наша встреча с «янтарической силой». А вот использование энергии падающей массы, в частности падающей воды, насчитывает десятки тысяч лет. И наконец, горение, живительный жар огня известны людям настолько давно, что их вполне можно отнести к началу человеческой истории. Слово писателю Рони Старшему — несколько строк из его прекрасной книги «Борьба за огонь»:

«Племя Уламров спасалось бегством… Обезумевшие от страданий люди не чувствовали боли, не замечали усталости — огонь умер, и все меркло перед лицом этого страшного несчастья. Уламры хранили огонь в трех ивовых плетенках, обмазанных глиной. Четыре женщины и два воина денно и нощно стерегли и кормили его. И вот огонь Уламров умер. Враги уничтожили две плетенки, в третьей во время стремительного бега огонь захирел и поблек, он был так слаб, что не мог съесть даже крохотной сухой былинки… Потом он превратился в маленькую красную точку… А потом исчез Только теперь Уламры ощутили всю тяжесть обрушившегося на них несчастья».

Шли годы. От огня, случайно найденного или завоеванного, от огня сберегаемого человек перешел к добыванию огня, сделав одно из величайших своих изобретений (справка: в 1960 г. многомесячная экспериментальная археологическая экспедиция в Карелию не смогла воспроизвести высекание огня из местных пород), и первая тепловая машина — костер — освоила множество новых профессий. К тому времени, когда древнегреческие мыслители еще только удивлялись способности натертого янтаря притягивать кусочки шелка, прирученный огонь уже светил, грел, жарил, обжигал посуду, варил стекло, обрабатывал камень и дерево, плавил и закаливал металл: работающая теплота на многие тысячелетия обогнала работающее электричество. И все-таки…

И все-таки главную свою работу в бригаде помощников человека они начали практически одновременно. Начали в те удивительные времена, которые мы сейчас называем эпохой первых научных и промышленных революций. Когда, освободившись от пут средневековья, от пут схоластики и невежества, человек как никогда раньше ощутил силу рационализма, неизменяемость истины, почувствовал вкус к добыванию фактов, к их глубокому анализу. И стал с энтузиазмом, без лишних сомнений превращать знания в работающие машины. Это была лавина, цепная реакция идей, открытий, изобретений, и человечество, которое еще только что кормилось подаяниями природы, вступило с ней в активные деловые отношения.

По-иному заработал и ветеран труда — огонь. Буквально за несколько десятилетий были до тонкостей изучены многие повадки работающей теплоты, родились совершенно новые области науки и инженерии — теплофизика, теплотехника, термохимия, теплоэнергетика, термодинамика. А с них пошли тысячи новых тепловых машин — от домашнего холодильника до гигантских котлов, где за секунду превращается в пар чуть ли не тонна воды; от велосипедного моторчика до ракетных двигателей и паровых турбин мощностью в миллион киловатт, каждая из которых, если поставить ее на суперавтобус, свободно повезла бы полмиллиона пассажиров. И вот что знаменательно: наука о теплоте и не помышляет о мемуарах, она вся устремлена в будущее. В полной мере это относится к одному из главных разделов теплотехники — теплообмену.

Институт тепло- и массообмена им. А. В. Лыкова Белорусской академии наук — ИТМО АН БССР — ведущая исследовательская организация страны по этой проблеме, имеющая к тому же признанный международный авторитет. Основное внимание в институте уделяется сложному комплексу явлений, где передача тепла сопровождается перемещением массы или перемещение массы создается специально для того, чтобы получить необходимый теплообмен. У тепломассообмена — его, наверное, для краткости можно называть ТМО — много интересных профессий. С некоторыми из них мы сейчас познакомимся, переместившись в центр белорусской столицы и совершив краткое путешествие по институту, беседуя с руководителями ряда исследовательских лабораторий. Об одной из новых профессий ТМО рассказывает руководитель лаборатории энергопереноса, доктор технических наук Олег Григорьевич Мартыненко:

— Начнем с факта, к сожалению, достоверного — мощный лазерный луч попадает в линзу, которая должна его сфокусировать, и линза мгновенно разлетается на куски. Случайность? Повторяем эксперимент — результат тот же… Вряд ли стоит дальше портить казенное имущество, случившемуся можно найти простое объяснение: для мощных световых потоков стекло — слишком плотный материал, оно отбирает у света слишком большую порцию энергии и в итоге быстро разогревается и разрушается. А отсюда вывод — для мощных источников света стеклянная оптика непригодна. Линзы из жидкостей тоже, не годятся, их плотность не на много меньше. Остается только газовая оптика — плотность газов в тысячи раз меньше, чем плотность твердого тела. Однако же, создавая линзу, газ нельзя поместить в прозрачную оболочку определенной формы, твердая оболочка сама станет частью линзы, и все неприятности начнутся сначала. Одним словом, нужны линзы из чистого газа, этакие двояковогнутые или двояковыпуклые облака. Но возможно ли это?

Представьте себе металлическую трубу, воздух в которой определенным образом разогрет, создано определенное его движение и в итоге в объеме трубы получено строго определенное изменение плотности воздуха. Например, такое, при котором свет, проходя по трубе, фокусируется или, наоборот, рассеивается: ведь именно изменение плотности среды изгибает, преломляет световой луч. И вывод: управляя процессами тепло- и массообмена, можно создать линзы из чистого газа, линзы практически без потерь (рис. 1). Они-то и являются объектом исследований и разработок аэротермооптики. «Аэро», входящее в это длинное слово, говорит о том, что оптика привлекла на помощь движение газа, аэродинамику, а «термо» напоминает о той роли, которая досталась теплообмену.

Аэротермооптика — это уже реальность. Она пока, правда, делает первые шаги, преодолевает разнообразные трудности (вот лишь три из них: сам световой луч, нагревая газ, меняет первоначальную его плотность; на газовую линзу покушается и гравитационное поле Земли; при быстром движении газа линзу могут испортить завихрения), однако уже выявилось немало потребителей газовых оптических систем. Это, например, световодные линии дальней связи, которые могли бы проложить практически неограниченное число телефонных и телевизионных каналов между городами и странами. В этих линиях информация передается с помощью световых сигналов, а не с помощью электрических, как в телефонных или телеграфных линиях связи. Свет идет по трубам, заполненным газом, или по пластмассовым световодам, выполняющим ту же роль, что телефонные или телеграфные провода.

Интересы аэротермооптики не ограничены газовыми линзами, и вот одно из подтверждений. Недавно в печати опубликованы расчеты так называемой «венерианской машины»: если к Венере под определенным углом направить острый луч лазера, то он, преломляясь в атмосфере планеты, может создать вокруг нее «вечное» световое кольцо, в которое можно вогнать большую энергию. Получится своего рода лазер с кольцевым резонатором, т. е. накопитель света, аналог конденсатора, который накапливает электрические заряды. «Венерианская машина» напоминает: у аэротермооптики неплохие перспективы в части принципиально новых приборов и процессов.

А теперь от этой экзотической профессии ТМО — экзотической хотя бы потому, что творения аэротермооптики имеют ту же физическую природу, что и мираж в пустыне, — мы перейдем к делу, на первый взгляд очень простому и прозаическому — к сушке. И сразу же обнаружим огромный диапазон областей техники и технологии, где применяется сушка. В процессе производства сушке подвергаются многие пищевые продукты, древесина, лекарственные препараты, микроскопические электронные приборы, автомобили, керамика, химические волокна, резина, строительные материалы, железобетонные изделия, ткани. Наконец, сушка входит важным элементом в технологию продукта, к которому все мы относимся с особым вниманием и имя которому Хлеб (справка: после обмолота зерно имеет влажность 24 %, а при неблагоприятных климатических условиях — еще больше; в хранилища должно поступать зерно с влажностью 14 %, а значит, необходима сушка зерна; масштабы этой операции нетрудно представить, вспомнив, что годовое производство зерна в стране составляет многие миллионы тонн; ежегодно зерносушилки должны убрать из зерна столько воды, что ею можно было бы заполнить плавательный бассейн площадью 10 км2). Слово имеет руководитель сушильно-термической лаборатории Павел Степанович Куц:

— Нынешние методы сушки совсем не похожи на привычную для всех нас операцию «Клади на солнышко, пусть сохнет». Современная сушка — это прежде всего изучение тонких механизмов тепло- и массопереноса, разработка теории сушки. Только на этой основе создается современная сушильная техника.

Приведу три примера. Первый относится к производству лекарств, к превращению пастообразных лекарственных смесей в плотные гранулы, из которых затем делаются таблетки. Для этого случая был разработан метод комбинированной сушки в падающе-кипящем слое: кусочки мягкой пасты, выдавленные из верхнего резервуара, сначала свободно падают вниз в вертикальной колонне, а навстречу им вверх идет поток теплого газа. Пока гранулы добираются до донной решетки, они слегка просушиваются, обрастают плотным сухим каркасом. Теперь уже в донной части аппарата можно производить интенсивную сушку в так называемом кипящем слое, перемешивая и прогревая гранулы потоками горячего газа (рис. 2). По этой схеме в институте был создан аппарат, который сейчас выпускается серийно и уже работает на ряде фармацевтических заводов. Приведу только три цифры, подтверждающие, что изучение тонких механизмов сушки с лихвой окупается — аппарат, о котором только что говорилось, работает в 4–8 раз быстрее своих предшественников и лучших зарубежных аппаратов; в нем в 2–2,5 раза снижены потери материала и в 3,5 раза уменьшена трудоемкость обслуживания.

Второй пример касается созданных в институте пневмогазовых зерносушилок производительностью от 2 до 50 т в час. В этих зерносушилках есть зоны контактного влагообмена между уже подсушенным и влажным зерном, нагрев зерна во взвешенном состоянии длится несколько секунд, он чередуется с охлаждением в плотном слое в течение примерно 10 мин. В итоге зерно высушивается быстро, равномерно, и, главное, в процессе сушки не снижаются его хлебопекарные качества, как это наблюдалось в сушилках старых образцов.

И наконец, пример третий. Интересная идея реализована в аппарате СВР (сушилка вихревая распылительная), предназначенном для сушки растворов, например для получения сухого молока. Здесь в цилиндрической камере создаются два встречных круговых потока: поток самого раствора и поток нагретого газа. Потоки эти сталкиваются, в камере образуются вихри, а в них идет интенсивный отбор влаги у раствора, и ее пары быстро удаляются. Вихревая сушка позволяет в 5—10 раз уменьшить размеры сушильных аппаратов, что должно понравиться не только технологам, но и строителям промышленных предприятий.

В этом рассказе промелькнуло упоминание о теплообмене в кипящем слое и можно было заметить, что «кипение» там никак не относилось к привычному процессу, с которым мы сталкиваемся при нагреве жидкостей. Да и вообще никакой жидкости в кипящем слое не было — там была лишь взвесь частиц, высушиваемые гранулы, пляшущие в потоках горячего газа. Но вот оказывается, что такая взвесь частиц обладает многими свойствами жидкости и даже носит название «псевдожидкость». Причем псевдожидкость обладает удивительными теплотехническими свойствами— твердые частицы в ней бурно перемешиваются и великолепно переносят тепло, во много раз лучше, чем такие прекрасные проводники тепла, как медь.

О некоторых свойствах псевдожидкостей и их использовании в теплотехнике рассказал руководитель лаборатории дисперсных систем, член-корреспондент АН БССР Сергей Степанович Забродский:

— Один из способов получения псевдожидкостей описал еще Дмитрий Иванович Менделеев, однако глубокое их изучение и практическое применение началось всего лет тридцать назад. Нетрудно в мысленном эксперименте пронаблюдать за процессом псевдоожижения, за получением псевдожидкости. На решетке или сетке находится сыпучий материал; снизу, из-под решетки, направляем вверх поток газа; постепенно увеличивая интенсивность потока, мы видим, как сыпучий материал приходит в движение, поверхность его выравнивается, напоминая водную гладь, наконец, сквозь толщу материала к поверхности прорываются газовые пузыри (рис. 3) и весь слой начинает бурлить, становится кипящим слоем. Вот эти бурлящие потоки частиц, перемещаемые и перемешиваемые потоками газа, — это как раз и есть псевдожидкость. О том, что дает создание псевдожидкости, заполнение газового потока частицами, говорит такой, например, факт: псевдожидкость, омывающая какую-либо деталь со скромной скоростью 1 м/с, осуществляет теплообмен столь же эффективно, как чистый газ, движущийся со сверхзвуковой скоростью, скажем 500 или даже 1000 м/с.

Псевдоожижение с равным успехом используется и для передачи тепла, и для передачи холода. При этом теплоноситель может работать, так сказать, в разных режимах: его можно, например, быстро перебрасывать по трубам, можно остановить и ссыпать в определенное место, если это понадобится, для какой-либо переработки.

Чтобы понять поведение столь сложной термодинамической системы, как псевдожидкость, приходится привлекать не только теплотехнику, но и гидродинамику; учитывать процессы случайные и строго детерминированные; уделять должное внимание всем механизмам теплопередачи, включая излучение; исследовать такие непривычные ситуации, как импульсный нагрев или движение однородной жидкости с газовыми пузырями.

Нужно, однако, сказать, что все затраты на глубокое изучение псевдожидкостей уже сейчас окупаются, а в будущем, можно ожидать, окупятся еще в большей степени. В качестве примера назову проблему, над которой уже давно думают теплотехники во всем мире, — низкотемпературное сжигание топлива в топках электростанций. В свое время наш институт выступил с обоснованным предложением: применив псевдожидкость, уменьшить и удешевить паровые котлы тепловых электростанций; котлы эти имеют пока размеры многоэтажных зданий. В дальнейшем, уже другими, был развит вариант, дополненный сжиганием самого топлива в псевдожидкости. В этом случае топливо можно будет сжигать без предварительного тонкого размола, причем будет гореть и низкосортное топливо, имеющее много легкоплавкой золы. Не все, наверное, знают, что миллионы тонн топлива, сжигаемого в топках больших паровых котлов, проходят непростые операции подготовки, в частности измельчение на особых «мельницах». Упростить подготовку топлива — значит получить огромный экономический эффект. И еще один аспект (в наши дни он привлекает особое внимание): такое низкотемпературное сжигание топлива позволит в 4–5 раз уменьшить выброс в атмосферу оксидов азота и в 10–20 раз уменьшить выброс оксидов серы.

У теплообмена с использованием псевдожидкостей есть уже и признанные достижения, например значительная интенсификация ряда химических процессов. Или создание печей для высокотемпературного нагрева металла, которые резко повышают качество и эффективность кузнечного производства.

Кузнечное дело, история которого начинается в глубокой древности, и в наши дни не утратило своего значения. Крупные кузнечные цеха существуют на большинстве машиностроительных заводов, в частности на автомобильных и моторостроительных. Причем принцип нагрева металла очень часто остается таким же, как тысячу лет назад: заготовку помещают в пламя, в пламенную печь, которая лишь по масштабам и по вспомогательному оборудованию, но никак не по принципу действия отличается от горна деревенского кузнеца. И так же как тысячи лет назад, безжалостно расходуется топливо на нагрев заготовки — в трубу улетают миллионы джоулей энергии. И так же выгорает металл, заготовка быстро окисляется в пламени, покрывается окалиной, которую потом приходится удалять токарям и фрезеровщикам.

Было предпринято немало попыток избавиться от этих недостатков, особенно от второго, но печи получались очень сложными, громоздкими или ненадежными. А печи, родившиеся в ИТМО, уже имеют значительный рабочий стаж (справка: на различных заводах работают 12 таких печей; одна из них в течение года круглосуточно работает в Москве на Первом Государственном подшипниковом заводе; Министерство автомобильной промышленности приняло решение о серийном выпуске новых печей), хотя, конечно, путь к этому был нелегким. О некоторых этапах этого пути и о самих печах рассказывает один из их создателей, руководитель лаборатории теплообменных процессов и аппаратов, доктор технических наук Николай Васильевич Антонишин:

— Частная, по сути дела, задача, о которой мне предстоит рассказать, относится к чрезвычайно важной и общей проблеме — повышению эффективности нагревательных устройств. Первый шаг в этом важном деле был сделан безвестным изобретателем, который оградил свой костер камнями. Как ни странно, но существуют области теплотехники, в которых во все последующие времена не было сделано других усовершенствований подобного масштаба. В числе таких областей — высокотемпературный огневой нагрев металлических заготовок. Здесь до самого последнего времени используется традиционная схема теплообмена — через газообразные продукты сгорания к металлу. А газ скорее можно назвать изолятором, чем проводником тепла: коэффициент, характеризующий его способность передавать тепло, равен 200, в то время как у жидких металлов или расплавов солей этот коэффициент равен 20 000.

В новых печах, разработанных ИТМО совместно со Специальным конструкторским бюро Министерства автомобильной промышленности, теплообмен осуществляется в кипящей псевдожидкости — сжигаемый газ первоначально отдает тепло песку, а тот, перемещаясь с потоками газа, отдает тепло металлу (рис. 4). На первый взгляд может показаться, что введение этого посредника — песка — ничего не должно дать, так как сам песок получает тепло все от того же теплоизоляторы — от газа. Однако суммарная поверхность песчинок огромна, и в значительной мере благодаря этому они отбирают у пламени во много раз больше тепла, чем сумела бы отнять нагреваемая заготовка.

Поучительна история создания новых печей. Все началось с того, что в отвлеченных, по сути, исследованиях были обнаружены очень эффективные процессы теплообмена в псевдожидкостях на основе газообразных продуктов горения. Затем была найдена область, где эти процессы могли дать большой эффект. Потом началась постройка печей и их разрушение — первые печи получались неудачными. И наконец, последние модели — они просты, надежны, нагрев идет в несколько раз быстрее, чем в обычных пламенных печах. И главное, не создается окалины, что дает особо ощутимый экономический выигрыш. Вся эта коротко рассказанная история заняла почти 15 лет, но она все же приводит к оптимистическому выводу — современные системы теплообмена могут в корне преобразовывать некоторые традиционные теплотехнические процессы.

Среди новых теплообменных систем важное место занимают тепловые трубы. Один из простых вариантов тепловой трубы— это закрытый металлический цилиндр (рис. 5); его внутренние стенки выложены слоем пористого материала, пропитанного легко испаряющейся жидкостью. Именно с движением этой жидкости связана теплопроводность трубы — на горячем конце жидкость испаряется и отбирает тепло; пары сами перемещаются к холодному концу — это нормальная конвекция; здесь пары конденсируются и отдают тепло; образовавшаяся жидкость по пористому материалу возвращается обратно к горячему концу трубы.

Это замкнутый цикл, бесконечный круговорот тепла и массы — прекрасная тепловая машина без шестеренок и рычагов, в каком-то смысле машина вечная, работающая надежно и эффективно. О некоторых профессиях машины «тепловая труба» рассказывает руководитель лаборатории низких температур Леонард Леонидович Васильев:

— Первые тепловые трубы были запатентованы сравнительно недавно, в сороковых годах, и долгое время совершенствовались в основном как непревзойденные проводники тепла. Именно непревзойденные, их даже назвали сверхпроводниками. Вот типичный пример, доказывающий, что это звание заслуженное: через тепловую трубу диаметром 1 см можно прогнать тепловую мощность порядка 10 кВт при разности температур на концах трубы всего в 5 °C; чтобы пропустить эту мощность через медный стержень такого же диаметра, на его концах нужен был бы перепад температур почти 150 000 °C.

Тепловые трубы уже сейчас применяются довольно широко, их можно встретить на космических аппаратах, в ядерных реакторах, криогенных хирургических инструментах, в системах охлаждения двигателей, утилизации тепла, сверхглубинного бурения, стабилизации грунта в условиях вечной мерзлоты. Немало интересных дел намечено для тепловых труб и в технике будущего. Они, например, смогут отбирать тепло у жидкого лития в термоядерных установках, участвовать в добывании тепла из глубин земли.

Однако если взглянуть на дело шире, то окажется, что тепловая труба — это не только теплопроводник, что это есть некий аппарат, в котором под действием небольших температурных перепадов происходит активное движение массы и преобразование энергии — важнейшие процессы любой работающей машины. Появились эти аппараты с замкнутыми испарительно-конденсационными циклами давно, семейство их довольно велико (в него, кстати, входит широко известная кастрюля-скороварка), и сейчас эти аппараты начали осваивать много новых интересных профессий. На их основе, например, создаются МГД-генераторы — теплоносителем в тепловой трубе может быть жидкий металл, и если поместить трубу в магнитное поле, то в движущемся металле как на концах движущегося проводника наведется электродвижущая сила индукции. На основе тепловой трубы создаются новые типы лазеров; в трубах может выполняться механическая работа за счет энергии движущегося теплоносителя; изучение процессов в тепловой трубе позволяет понять некоторые физиологические механизмы; с помощью тепловых труб можно вести некоторые химические процессы, которые пока числятся в списке неосуществимых. Этот список уже сейчас можно было бы продолжить, хотя главные открытия и изобретения, наверное, все-таки впереди.

Тепловые трубы — один из примеров того, как внимание к сложной теплотехнической проблеме может дать очень важные научные и практические результаты.

Есть немало областей науки, с достижениями которых мы часто сталкиваемся, часто слышим о них: карманный компьютер и цветные телевизоры прекрасно пропагандируют в миллионных аудиториях прогресс электроники. А есть такие научные области, успехи которых не очень заметны широкой публике: электрическая лампочка в вашем доме светит, как и полсотни лет назад, и мало кто знает о тех изменениях, которые произошли за это время в самом производстве электричества (справка: в предвоенные годы пар, работающий на теплоэлектростанциях, имел такие параметры: температуру 400–425 °C, давление— 2,5–3 МПа; в послевоенные годы параметры пара подняли до 500–525 °C и 9 МПа; сейчас они подняты до 565–580 °C и 24 МПа; один из выигрышей — экономия 25–30 % топлива; это эквивалентно появлению в топливном балансе страны десятков «бесплатных» угольных шахт).

Работой больших масштабов, делами огромной важности занята скромная наука — теплотехника, много интересного делают и намечают сделать все ее главные направления, в том числе и те, что заняты исследованием и использованием процессов теплообмена.

Надежды связаны с нейтрино

Элементарная частица нейтрино, которую, как казалось раньше, нельзя экспериментально обнаружить, сегодня сама стала тонким инструментом в ядерных исследованиях.

Картина мира, которую рисовали себе естествоиспытатели всего несколько столетий назад, отличалась завидной простотой. Были, конечно, кое-какие неясности. Были. Но касались они в основном количественной стороны дела, некоторых подробностей, деталей. Главное же было привычным и поэтому понятным. Привычное основное свойство материи — масса, привычный основной вид процессов — механическое движение.

Первые удары по удобной механической модели мира были нанесены давно, но их истинный смысл осознали лишь в прошлом веке: оказалось, что есть у материи и другие свойства, столь же фундаментальные, как масса. Эти свойства назвали электрическим зарядом и магнетизмом, детально изучили их, только стали привыкать к гравитационно-электрическо-магнитному миру, как пришли новые неприятности. Обнаружилось еще одно фундаментальное свойство материи, которому дали скромное наименование — ядерные силы.

Но и на ядерных силах дело не кончилось. Исследуя ядро, физики одну за другой открывали такие подробности в устройстве нашего мира, о которых уже редко говорили «удивительное» или «непривычное», а чаще — «безумное».

Здесь было все. И калейдоскоп новых свойств материи, только успевай им названия придумывать: «барионный заряд», «гиперзаряд», «странность», «очарование»… И огромное множество новых ядерных частиц — сначала десятки, а потом уже и сотни — вместо еще недавно единственной тройки «электрон — протон — нейтрон»… И какие-то совершенно непостижимые процессы: рождение частиц из «пустоты», из вакуума, превращение одной частицы в несколько примерно таких же, рождение частиц, всегда закрученных в одну сторону, хотя по законам симметрии часть из них должна вращаться «туда», а часть «обратно» (не может же монета без всяких причин всегда падать гербом кверху).

Сегодня таких безумных фактов накопилось безумное множество. Им нет места в старой доброй физике, но и нет для них пока физики новой — по этим фактам не удается представить себе весь свод законов, которыми живет микромир, как, скажем, не удается угадать сложный рисунок по отдельным точкам, разбросанным на листе бумаги. Правда, трудами великих умов созданы изумительные теоретические построения типа «все могло бы быть так…». Но они обычно содержат очень много «если бы» и рисуют к тому же какие-то части, фрагменты картины. А кто знает, во что превратятся фрагменты, когда картина будет нарисована целиком.

Что же мешает выявить основные законы микромира, такие же общие и бесспорные, как, например, закон Ома? Может быть, этих законов вообще нет и царит в микромире анархия? Или еще не создан язык для их описания, язык, достаточно безумный для этого безумного мира? (Устройство цветного телевизора или компьютера трудно описать словами — для этого нужен язык электрических схем.) Или, может быть, для создания упорядоченной модели микромира еще нужно найти что-то самое важное, подобно тому как Копернику нужно было найти истинный центр нашей планетарной системы, чтобы избавиться от птолемеевых нагромождений?

Физики (и теоретики, и экспериментаторы) охотно будут обсуждать с вами эти вопросы. Охотно и обстоятельно. Но только недолго. У них сейчас для этого просто очень мало времени — у них очень много работы. В физике микромира вновь задули ветры оптимизма. Исследователи создают новые супервиртуозные теоретические модели, планируют и проводят новые ультрасложные эксперименты, пытаясь найти и объяснить новые факты, которых, может быть, как раз и не хватает для построения, как они говорят, красивой теории.

В последнее время надежда на успех в какой-то мере связана с так называемыми нейтринными экспериментами. Они проводятся на нескольких ускорителях, в том числе и на Серпуховской машине — на всемирно известном ускорителе Института физики высоких энергий, который находится в поселке Протвино под Серпуховом. В предельно упрощенном виде эти эксперименты выглядят так: атомные ядра бомбардируют потоком нейтрино и регистрируют, сколько каких ядерных реакций происходит под действием этой бомбардировки.

Уже в самом факте нейтринных экспериментов есть что-то удивительное, парадоксальное. За нейтрино издавна укрепилась репутация неуловимой частицы, теперь же оно само стало орудием исследований, инструментом экспериментаторов. Неуловимость нейтрино связана с тем, что у него нет электрического заряда и, как полагают некоторые теоретики, нет массы покоя (вопрос о массе, правда, пока остается открытым, но если она и есть, то чрезвычайно мала). Но главное — это удивительная инертность нейтрино, когда дело касается взаимодействий с другими частицами. Нейтрино беспрепятственно проходит через вещество, не взаимодействует с ним. Точнее, почти не взаимодействует — рано или поздно нейтрино все же натыкается на ядерную частицу, которая под действием удара чаще всего разрушается, распадается. Эти распады частиц, вызванные нейтринной бомбардировкой, представляют особый интерес: они могут дать исследователям информацию о ядерных процессах, которую никакими другими способами получить нельзя.

Нетрудно догадаться, что для проведения нейтринных экспериментов нужно создать поток нейтрино, нужно очистить его от всех других частиц и нужно терпеливо ждать «событий» — столкновения нейтрино с ядерными частицами. Но от общей схемы, от этих, казалось бы, простых «нужно» лежит трудный и долгий путь до реальных установок, реальных экспериментов.

Вот несколько штрихов, дающих представление о подготовке к нейтринным экспериментам на Серпуховском ускорителе. Рассказывают создатели нейтринной установки, участники первых экспериментов на ней.

Доктор физико-математических наук Альберт Иванович Мухин, руководитель лаборатории Института физики высоких энергий:

— Идею нейтринных экспериментов на ускорителях еще в шестидесятых годах выдвинули академики Моисей Александрович Марков и Бруно Максимович Понтекорво. Однако понадобились годы, прежде чем идея была реализована. Основной элемент любой установки для таких экспериментов — это, конечно, сам ускоритель, который дает пучок протонов высокой энергии — у нас до 70 ГэВ. Протоны бомбардируют алюминиевую мишень, и из нее вылетают потоки разных частиц, в частности пи-мезоны (π+) и ка-мезоны (К+). Пролетев некоторое расстояние, и те и другие распадаются (см. рис.) на мю-мезоны и нейтрино (μ + v).

Частицы, вылетавшие из алюминиевой мишени, пробегают по длинной (150 м) вакуумной камере, и за время этого пробега происходит очень много распадов, рождающих нейтрино. Так создается поток нейтрино, но, конечно, не в чистом виде, а в смеси с огромным количеством других частиц.

На пути из вакуумной камеры к регистрирующим устройствам частицы должны преодолеть железный фильтр толщиной 66 м. Нейтрино пронизывают его легко и просто, для всех же остальных частиц этот фильтр практически непреодолим. В итоге на выходе фильтра получается практически идеально чистый поток нейтрино. Вся установка окружена железным экраном с общей массой 20 тыс. т — по массе это большой океанский. лайнер.

Доктор физико-математических наук Виталий Сергеевич Кафтанов, руководитель лаборатории Института теоретической и экспериментальной физики:

— Мишени, в которые направляют поток нейтрино, — это квадратные стальные плиты со стороной 2,2 м, толщиной 12 см. Всего таких плит на установке 24, нейтринный поток последовательно пронизывает их одну за другой. В промежутке между каждыми двумя соседними плитами находятся детекторы частиц— искровые камеры. Это фактически трехпластинчатые конденсаторы с высоким напряжением (30 кВ) между пластинами. Пролет нейтрино в таких детекторах, конечно, не регистрируется. Но когда в какой-нибудь стальной пластине нейтрино налетит на ядерную частицу, то их взаимодействие будет точно зафиксировано— новые частицы, рожденные этим взаимодействием, пролетая между пластинами «конденсатора», на своем пути ионизируют газ, и по их невидимому следу проскакивает тонкая искра, которая фотографируется или регистрируется фотоэлектронным устройством. Примечательно вот что. В любых других ядерных экспериментах регистрируется очень много «событий» — столкновений, распадов и т. п. — и потом из сотен тысяч фотографий отбирается несколько нужных. В нейтринных экспериментах посторонних «событий» нет, регистрирующие приборы в основном все время молчат. Но когда они наконец срабатывают, то это почти всегда означает, что произошло истинно нейтринное «событие» — какое-то нейтрино попало в ядро. В первом цикле экспериментов за три недели было зарегистрировано несколько тысяч таких «событий».

Доктор физико-математических наук Александр Васильевич Самойлов, руководитель лаборатории Института физики высоких энергий:

— Одна из главных характеристик установок для нейтринных экспериментов — это частота следования «событий». Желательно, чтобы «события» происходили как можно чаще — здесь, очевидно, пояснений не требуется. Частота «событий» зависит от плотности нейтринного потока, а значит, от многих факторов: от энергии протонов, направленных из ускорителя на алюминиевую мишень, от интенсивности протонного пучка. И еще от конфигурации потока пи-мезонов и ка-мезонов, из которых в итоге образуется поток нейтрино. Если собрать, сконцентрировать пи-мезоны и ка-мезоны, не давать им разлетаться по сторонам, а направить их в сторону стальных плит-мишеней, то и поток нейтрино в этом направлении станет «гуще», а значит, чаще будут происходить и регистрироваться «события».

Для фокусировки потока частиц в вакуумной камере перед ней установлены магнитные параболические линзы. Нужные нам пи-мезоны и ка-мезоны имеют положительный электрический заряд, и поток этих частиц есть не что иное, как электрический ток. Ну а на ток можно влиять магнитным полем.

Фокусирующие линзы (всего их четыре; частицы последовательно проходят одну линзу за другой) сделаны из тонкого металла (толщина несколько миллиметров) и чем-то напоминают песочные часы, положенные набок, — каждая линза имеет форму двух параболоидов вращения, соприкасающихся своими вершинами. Если по такой линзе пропустить ток, то в ней возникает магнитное поле, сжимающее поток частиц. Частицы, вылетевшие из алюминиевой мишени, имеют очень большую энергию, и, чтобы сфокусировать их, по линзе пропускают ток до 500 кА. При этом на линзу обрушиваются огромные механические нагрузки (до 100 кН). Уже эти цифры говорят о трудностях создания линз для нейтринного эксперимента. Однако трудность задачи вполне окупается результатом — сильно расходящийся поток частиц становится практически параллельным.

Так вот, фокусирующие линзы в 10 раз обогатили нейтринный поток, или, проще говоря, в 10 раз увеличили среднее число нейтрино, попадающих в стальные листы-мишени. А значит, в 10 раз повысили число «событий» в единицу времени. Но, может быть, даже важнее другое: если изменить направление тока в обмотках линзы, то она будет фокусировать не частицы π+ и К+, а частицы π- и К-, т. е. частицы с отрицательным электрическим зарядом. А эти частицы, распадаясь, рождают уже не нейтрино, а антинейтрино. И экспериментатор нажатием кнопки (это, конечно, некоторое упрощение, но не принципиальное) может сменить тип наблюдаемых ядерных превращений. И еще: меняя силу тока в фокусирующих линзах, можно в конечном итоге менять энергию нейтрино, что тоже важно для экспериментаторов.

Доктор физико-математических наук Кирилл Петрович Мызников, руководитель лаборатории Института физики высоких энергий:

— Машинное время всякого ускорителя очень дорого, тем более такого, как серпуховской гигант. И не только потому, что столь сложная машина не должна «крутиться» вхолостую. Главное в том, что есть очень много желающих работать на нашей машине, проверять алгеброй эксперимента гармонию идей. А сутки, как известно, не растягиваются.

Вот почему всякая новая экспериментальная установка должна вписаться не только в схему, но и в ритм ускорителя. Так, в частности, сгустки ускоренных протонов (ускоритель, как известно, работает в импульсном режиме) распределяются между несколькими экспериментальными установками, несколькими группами исследователей примерно по такому принципу: «один импульс тебе, другой — мне, третий — ему…». Практически, конечно, машинное время делится иначе, но к ускорителю всегда подключено несколько установок, и протонный пучок необходимо коммутировать, переключать. А это не так-то просто, если учесть огромную энергию протонов. Даже просто сбрасывать этот пучок с кольца, спрямлять его, направляя в экспериментальные установки, приходится в два приема — коротким сильным «ударом» пучок заставляют колебаться, а затем в удобный момент его отгибают в нужную сторону.

Всякое управление протонным пучком осуществляется с помощью магнитных полей, в принципе так же, как и управление электронным лучом в телевизионном кинескопе. Но конечно, масштабы, цифры у нас совсем иные. Вот некоторые из них.

От самого ускорителя до экспериментальной установки протонный пучок проходит 160 м, совершая при этом несколько поворотов. Диаметр пучка в фокусе 2 мм, в каждом протонном импульсе около 1012 частиц с полной энергией, т. е. с энергией до 70 ГэВ. Пучок очень концентрированный — в ореол диаметром около 51 см попадает лишь 0,1 % частиц. Потери протонов на всем пути от ускорителя до нейтринной установки не превышают 0,5 %. Столь высокая эффективность передачи пучка необходима по ряду причин, в частности она позволяет снизить требования к радиационной защите.

Есть и другая группа задач — всю исследовательскую аппаратуру необходимо синхронизовать с появлением протонного импульса. Нужно, например, чтобы синхронно включались магнитные линзы, подавалось напряжение на пластины искровых камер, включались регистрирующие приборы. Причем все это должно срабатывать надежно, с микросекундной точностью. И переключать нужно огромные мощности — суммарная мощность наших систем, работающих лишь на нейтринный канал, достигает миллиона ватт, аппаратура питания, управления протонным пучком и его переключения занимает целый трехэтажный корпус, буквально набитый самой современной электроникой.

Получение снимков первых нейтринных «событий» было большой радостью не только для самих физиков, но и для многих инженеров, техников, рабочих, для всех, кто готовил техническую базу эксперимента.

Лауреат Ленинской премии академик Анатолий Алексеевич Логунов, научный руководитель Института физики высоких энергий:

— Даже по нескольким фрагментарным характеристикам установки можно увидеть, что организация нейтринных экспериментов — дело непростое, небыстрое. И прежде чем начинать такое дело, вкладывать в него время, силы, средства, исследователи тщательно взвешивают все «за» и «против», пытаются оценить возможные результаты. Нужно сказать, что нейтринные эксперименты — это лишь один из участков на достаточно широком фронте ядерных исследований. Но участок интересный, судя по всему, перспективный.

Во-первых, сами нейтрино — очень тонкий инструмент. Они взаимодействуют с ядерными частицами, если можно так сказать, очень аккуратно, тонко. И поэтому нейтринным «прощупыванием» можно вести исследование структуры самих элементарных частиц, в частности структуры протонов и нейтронов.

Второе. Все взаимодействия, связанные с нейтрино, — это так называемые слабые взаимодействия. Всего нам пока известны четыре разновидности взаимодействий: гравитационные, электромагнитные, сильные (ядерные) и слабые взаимодействия. К этому последнему классу относится огромное разнообразие процессов и, в частности, почти все распады ядер и отдельных частиц. В то же время знаем мы о слабых взаимодействиях очень мало.

Нейтрино — прекрасный инструмент для изучения слабых взаимодействий. Оно само продукт этих взаимодействий, почти все процессы, вызываемые нейтринной бомбардировкой, — это слабые взаимодействия.

Слабое взаимодействие универсально — в нем участвуют все известные частицы. Ряд частиц участвует только в слабых и электромагнитных взаимодействиях и не испытывает сильных взаимодействий. Эти частицы называются лептонами. Слабое взаимодействие лептонов изучено при сравнительно малых энергиях, причем установлено, что с ростом энергии сила слабого взаимодействия растет. Это, кстати, выделяет слабые взаимодействия из всех других известных ядерных процессов. Вопрос о том, может ли слабое взаимодействие при высоких энергиях стать сильным, — один из фундаментальных вопросов современной физики. Ответ на него зависит от структуры слабых взаимодействий. Возможно, что подобно тому, как электромагнитные взаимодействия переносятся фотонами, слабые взаимодействия тоже переносятся некоторой частицей, которую предварительно, «заочно», назвали промежуточным векторным бозоном. Поиски этой частицы пока не дали положительных результатов. Если промежуточный бозон будет обнаружен, то это будет означать, что слабые взаимодействия в принципе не могут стать сильными.

Есть основания надеяться, что нейтринные эксперименты смогут дать дополнительную интересную информацию о слабых взаимодействиях и тем самым приблизят нас к пониманию этого класса процессов.

Нейтринные эксперименты имеют отношение и к другим чрезвычайно важным проблемам, в том числе к проблемам систематики элементарных частиц. Здесь в качестве примера можно назвать поиск тяжелых лептонов (пока нам известны лишь легкие лептоны — электрон, мю-мезон и нейтрино). Или еще такую задачу — изучение сущности различий между электроном и мю-мезоном. Дело в том, что обе эти частицы совершенно одинаково участвуют в слабых и электромагнитных взаимодействиях, хотя масса мю-мезона примерно в 200 раз больше, чем масса электрона.

Рассказывая о проблеме единой теории ядерных процессов, физики в качестве аналогии часто приводят созданную Максвеллом теорию электромагнетизма. И действительно, эта теория сформулировала общие законы, которым подчиняется огромный класс разных, как казалось, явлений. Но не стоит забывать, что великая Максвеллова победа начиналась с довольно простых экспериментов Эрстеда, Био и Саварра, Фарадея, Ампера, Ленца, с экспериментов, установивших главное — единство, взаимосвязь электричества и магнетизма. Веками считалось, что электричество — это одно, а магнетизм — совсем другое. Но вот обнаруживается, что если поднести магнитную стрелку к проводнику с током, то стрелка поворачивается. Притягивают или отталкивают друг друга два проводника, по которым течет ток. Если в магнитном поле двигать проводник, то в нем наводится электродвижущая сила. Выясняется, что магнетизм возникает при любом движении электрического заряда, что при всяком изменении электрического поля появляется магнитное, при изменении магнитного — электрическое. Одним словом, в простейших опытах выясняется: нет независимых электрических и магнитных явлений, есть нечто единое — электромагнетизм.

Вот такие же объединяющие факты ищут сегодня исследователи микромира. Ищут факты, которые помогут как-то связать безумное множество ядерных характеристик и процессов. Найти эти факты, конечно, несколько сложнее, чем обнаружить магнитное поле тока. Но и инструмент нынешних экспериментаторов — это не стрелка компаса, не медная проволочка, подключенная к гальваническому элементу.

В недолгой истории ядерной физики были периоды оптимизма, были периоды пессимизма, но никогда не знала она периодов бездеятельности. И сегодня исследователи микромира не опустили руки перед сложностью проблемы. Вооруженные могущественной, совершенной техникой, тонкими теоретическими гипотезами, виртуозными экспериментальными методами, такими, в частности, как методы нейтринных экспериментов, физики ищут контуры завершенной, красивой модели микромира. Ищут с надеждой найти.

Пробиться к центру Солнца

Научно-реалистическое повествование в девяти действиях с прологом и эпилогом.

Пролог. Астрономы и астрофизики уходят в горы, затаскивают туда свои телескопы, спектрографы, интерферометры, исходя из чисто деловых соображений: в горах прозрачней атмосфера, там больше ясных дней, меньше мешают ночные острова электрического света. Одним словом, в горах лучше небо.

Но неужели только это?

Наверное, все же, оставив внизу шум и суету городов, человек еще и совсем по-иному видит этот бездонный черный океан с рассыпанными в нем мириадами бриллиантовых пылинок. И звезды, наверное, становятся значительно ближе, конечно, не в метрах, не в световых годах, а в не придуманных пока единицах человеческой привязанности, звезды становятся ближе к тем, кто всматривается в них с горных вершин Памира, Крыма, Саян, Кавказа.

Кавказ можно смело назвать форпостом нашей астрофизики, здесь находятся четыре крупные обсерватории мирового класса (рис. 1 на втором листе цветной вклейки): три из них — в Абастумани, Бюракане и Шемахе — входят в состав республиканских академий Грузии, Армении и Азербайджана, а четвертая — в районе станицы Зеленчукской — Специальная астрофизическая обсерватория АН СССР с крупнейшим в мире оптическим телескопом БТА и огромным радиотелескопом РАТАН (о них рассказывается в очерке «На старт выходят чемпионы», с. 85). Сейчас на Северном Кавказе, в Кабардино-Балкарии, создается гигантский астрофизический комплекс Института ядерных исследований АН СССР. Для этого комплекса в отрогах Эльбруса сооружается тоннель, который должен в итоге привести исследователей в скрытые от нас пока недра звезд и прежде всего к центру нашей собственной звезды, к центру Солнца.

Действие первое. Земля быстро приближается к Солнцу, однако все еще не видны главные детали этой космической тепловой машины. За последние десятилетия Солнце и Земля в нашем сознании сильно сблизились. Голубая планета, конечно, ходит вокруг огненного солнечного шара по неизменному своему маршруту, но представление об этом грозном «…от Земли до Солнца 150 млн. км…» стало совсем иным: много раз наши космические аппараты прибывали на Венеру, и мы даже видели телепередачу с ее поверхности; а ведь Орбита Венеры лежит на полпути от Земли к Солнцу. Более того, космические автоматы летят к Венере по сложной криволинейной траектории протяженностью 350–400 млн. км. А до Солнца всего 150 млн. км… Размеры Солнца, его «…полтора миллиона километров в диаметре…» тоже стали как-то понятнее — это всего четыре отрезка Земля — Луна, отмеренные космическими аппаратами уже десятки раз.

И все же с большим трудом прорисовывается представление о Солнце как об осязаемой реальности, представление об истинных масштабах пространства и времени, в которых живет наша звезда. Очень трудно, например, в полной мере представить себе, что такое есть стабильность солнечного излучения и неистощимость запасов солнечной энергии на протяжении миллиардов лет. Какое сверхтопливо обеспечивает столь долгое горение? И почему это сверхтопливо горит так медленно, так ровно, почему не вспыхивает, как бензин, не взрывается, как порох?

Действие второе. Просматривая научную литературу разных лет, мы следим за тем, как меняется представление о солнечной энергетике. Мнение древнейших мыслителей касательно этого предмета отличалось прекрасной простотой. Испещренные иероглифами и примитивными рисунками каменные страницы первых научных трактатов утверждают, что Солнце есть некое живое существо, скажем, огнедышащий дракон, послушный раб или доброе божество, которое каждую ночь пробирается через подземные пещеры к своему утреннему старту, сражаясь при этом со страшными чудовищами и демонами. Одну из первых попыток представить Солнце физическим объектом мы встречаем в трудах Анаксагора, жившего примерно два с половиной тысячелетия назад. Он утверждал (за что, кстати, поплатился тюрьмой и изгнанием), что Солнце — это не бог Аполлон, а просто раскаленный камень размером с полуостров Пеллопонес, т. е. имеет километров 200–300 в поперечнике. Отсюда нетрудно подсчитать, что расстояние до Солнца, оказывается, не на много больше, чем от Москвы до Владивостока, т. е. 10–15 тыс. км.

К началу нашего века наука подошла с такими двумя основными гипотезами: разогрев Солнца происходит из-за того, что на его огромную поверхность падают метеориты, или потому, что гравитационные силы сжимают Солнце. Эти гипотезы, однако, были отвергнуты беспощадной арифметикой — из них не получалось и тысячной доли той энергии, которую выделило Солнце за миллиарды лет своего непрерывного трудового стажа. Так возник первый солнечный кризис, первый конфликт правдоподобных научных гипотез с реальностью. Кризис миновал лишь после того, как смелая мысль великого теоретика Эйнштейна предсказала знаменитое Е =m·c2, т. е. эквивалентность массы m и энергии Е, а в итоге возможность получения энергии за счет уменьшения массы. Прошло немного времени и предсказание подтвердилось: в закромах природы был обнаружен принципиально новый источник энергии — ядерные реакции. Только после этого появились теории солнечной топки, согласованные с фактами.

Действие третье. В самых общих чертах мы знакомимся с солнечными термоядерными циклами. За многие десятилетия пристального изучения Солнца накопилось немало достоверных сведений о нем. В частности, установлено, что главные солнечные вещества — это гелий и водород, по массе их там не менее 98 %. В то же время, исследуя ядерные превращения в своих земных лабораториях, физики выяснили, что при определенных условиях четыре атома водорода могут слиться в один атом гелия и что в этой ядерной реакции выделяется огромная энергия. Из 1 г водорода получается примерно 0,992 г гелия плюс такое количество энергии, для получения которого пришлось бы сжечь 200 т угля, т. е. 8—10 железнодорожных вагонов. А из всего этого сам собой напрашивается вывод — энергию солнечного излучения дает превращение водорода в гелий.

Это, конечно, только так говорится, «сам собой напрашивается вывод…», на проработку возможных вариантов солнечных термоядерных реакций ушли десятилетия, в этой работе участвовали сильнейшие умы физики. Одна из главных трудностей состояла в том, что четыре ядра атома водорода не могут сразу слиться в одно ядро гелия, и нужно было найти реальные цепочки промежуточных ядерных реакций, реальные солнечные циклы, открывающие путь из водорода в гелий. В итоге получили признание два таких цикла: углеродный (точнее, углеродно азотно-кислородный) и водородный, который в свою очередь может развиваться по нескольким разным ветвям — борной, бериллиевой, литиевой и другим. Названия химических элементов говорят о том, что именно через них проходит многоступенчатая термоядерная реакция; проходит путь из водорода в гелий.

Разные циклы в принципе могут давать разный вклад в солнечную энергетику — все зависит от неизвестных нам пока конкретных условий, и прежде всего от температуры и давления в солнечных недрах. Так, в частности, считается, что на углеродный цикл сейчас приходится всего 2–3 % излучаемой энергии, но его роль резко возрастет немного позже, через 2–3 млрд. лет, когда температура Солнца заметно повысится. А пока роль главного поставщика солнечной энергии отводится водородному циклу, который всегда начинается с так называемой рр-реакции — со слияния двух ядер водорода, т. е. двух протонов (они обозначаются буквой р), в ядро дейтерия. Реакция эта сопровождается выбрасыванием позитрона и нейтрино.

Действие четвертое.Обнаруживается чрезвычайно важная особенность рр-реакции, оберегающая Солнце от взрыва. Мир, в котором мы живем, устроен несколько сложней, чем это кажется с первого взгляда. Так, например, «невооруженным глазом» мы умеем ощущать только гравитационные взаимодействия— притяжение тел (скажем, падение яблока на землю), обусловленное особой сущностью, которую назвали массой. Но уже опыты с натертой расческой и компасом вводят нас в мир электромагнитных взаимодействий, обусловленных уже не массой, а совсем иными, незаметными поначалу свойствами — электричеством и намагниченностью. Свою особую природу имеют ядерные, или, иначе, сильные, взаимодействия — их не проиллюстрируешь простейшими опытами на столе, но кто может сомневаться в реальности ядерных сил после миллионов киловатт атомных электростанций! Наконец, еще один особый вид взаимодействий — их называют слабыми — со своими особыми законами и повадками, со своей сферой действий. Слабые взаимодействия, в частности, отличаются поразительной, если можно так сказать, инертностью, пассивностью, и это очень хорошо видно на примере рр-реакции.

Для того чтобы два водородных ядра, два протона, слились в ядро гелия, они обязательно должны сильно сблизиться, должны столкнуться. Но этого мало — должно еще произойти некое не очень понятное пока «нечто», которое как раз и называют слабым взаимодействием. Происходит такое «нечто» чрезвычайно редко — вы много раз сильно хлопаете дверью, пока наконец легонько срабатывает защелка замка и дверь захлопывается. Применительно к солнечной рр-реакции возможны такие цифры: на каждые 1050 столкновений двух протонов в среднем приходится одно рождение ядра дейтерия; протон в среднем 2 млрд лет ждет своего включения в дейтерий. Подобная инертность слабых взаимодействий— это созданный природой своего рода защитный механизм, оберегающий Солнце от взрыва, — протонов много, сталкиваются они часто, но в каждый данный момент очень малая их часть совершает слабое взаимодействие, вступает в рр-реакцию. И поэтому Солнце не взрывается, а как бы тлеет, растягивая свои энергетические ресурсы на миллиарды лет.

В ядре дейтерия две тяжелые частицы — протон и нейтрон: перед рр-реакцией было два протона, один остался сам собой, а второй превратился в нейтрон и именно в результате слабого взаимодействия. При этом родились две новые частицы — позитрон, который унес положительный заряд протона, и нейтрино. У нейтрино нет ни ощутимой массы, ни электрического заряда, оно рождено слабыми взаимодействиями и только в них может участвовать.

Действие пятое. Настойчивый Рэй Девис дает повод для острых споров о втором солнечном кризисе. Тщательно отработанные гипотезы солнечных циклов — это пока лишь гипотезы. И у нас, у землян, пока есть только одна возможность убедиться в том, что гипотетические ядерные циклы действительно идут на Солнце. Эта возможность — изучение нейтрино, рожденных в солнечных термоядерных реакциях и добравшихся до Земли. Только нейтрино, безразличные ко всему, почти никогда не вступающие в контакты с веществом (частицы слабых взаимодействий!), могут вырваться из солнечных глубин, где как раз полыхает термоядерное топливо, идет превращение водорода в гелий. Никакие другие известные нам гонцы, кроме нейтрино, ни электромагнитные волны, ни разнообразные атомные частицы, не могли бы пройти сквозь толщу Солнца и принести на Землю сообщения о том, что в действительности происходит в недрах нашей звезды.

Но если нейтрино так легко проходят сквозь все и вся, то как можно их обнаружить на Земле? В какие сети поймать? В 1946 г. молодой в то время физик, ныне академик, лауреат Ленинской премии Бруно Максимович Понтекорво предложил хлор-аргоновый метод регистрации нейтрино, на основе которого развились нынешние системы детектирования (обнаружения) этих неуловимых частиц. Сущность метода состоит в следующем: некоторые нейтрино, попав в атомы вещества, все же взаимодействуют с их ядрами; при этом один из нейтронов ядра, выбросив электрон, превращается в протон; число положительных зарядов в ядре увеличивается на единицу; атом передвигается в следующую клеточку таблицы Менделеева; это значит, что происходит рождение нового химического элемента, т. е. именно то, о чем мечтали средневековые алхимики. Вот так нейтрино может превратить атом хлора-37 в атом аргона-37 (рис. 6 на цветной вклейке). Выделив из хлора атомы аргона и посчитав их, мы узнаем число нейтрино, пойманных веществом.

Почти через 10 лет после того, как был предложен этот метод, американский физик Рэй Девис построил первую установку с хлор-аргоновым детектором для регистрации нейтрино, вылетающих из атомного реактора. Основой установки был бак на 12 т перхлорэтилена — хлористого соединения, для которого была отработана технология извлечения атомов аргона-37. Первые же результаты, полученные на новой установке, оказались совершенно неожиданными — никаких нейтрино вообще не было обнаружено. Позже, через несколько лет, этому нашли объяснение — в реакторе образуются антинейтрино, а не нейтрино. Но еще до того, во времена, когда многие компетентные люди считали, что нужно бросить это пустое хлор-аргоновое предприятие, Девис, продемонстрировав пример удивительной целеустремленности, начал создание новой, значительно более крупной установки с 600-тонным перхлорэтиленовым детектором. Установка в этот раз была рассчитана на регистрацию солнечных нейтрино, строилась она 4 года, и в 1968 г. пошли первые результаты измерений. Эти результаты тоже были отрицательными — профессор Девис солнечных нейтрино не обнаружил.

Результаты Девиса, конечно же, вызвали поток идей и мнений, в том числе и самых экстремальных. Кое-кто считал, что наступил второй солнечный кризис, что нужно полностью отказаться от термоядерных циклов и признать свою полную несостоятельность — в звездах, в частности в Солнце, действуют какие-то незнакомые нам источники энергии. А может быть, там горит вакуум… Или полыхает время… Или тлеет еще какое-нибудь неизвестно что. И другая крайность — результаты Девиса вообще нельзя принимать всерьез. Где гарантия, что из детектора извлекается весь аргон? Может быть, атомы аргона просто «прилипают» к хлору и мы, таким образом, не получаем вообще никакой информации о действии нейтрино…

Что касается экспериментальной «грязи», то Девис, кажется, сделал все возможное, чтобы исключить ее. Он, например, поштучно вводил в бак атомы аргона-37, а затем извлекал их почти все до одного. Или превращал хлор в аргон, но уже не с помощью нейтрино, а совсем другим, тщательно контролируемым способом, и опять-таки извлекал все атомы, которые должны были появиться согласно расчетам. Кое-кто из скептиков еще пытается раздуть уголек сомнений, но вряд ли из "него разгорится пламя, способное ликвидировать проблему. И в то же время пока никак не скажешь, что проблема солнечных нейтрино переросла во второй солнечный кризис.

Действие шестое. Неожиданный результат нейтринных экспериментов пока может привести к одному только выводу — нужно работать. Начнем с того, что Девис, повысив точность метода, все же обнаружил нейтрино, хотя и в чрезвычайно малом количестве, пока оно согласуется с моделями Солнца не на много лучше, чем прежнее «ничего». Вместе с тем теоретики пересмотрели эти модели и заметно снизили свои требования касательно нейтринных потоков. Началось также конструктивное обсуждение некоторых, как казалось раньше, слишком смелых гипотез, которые могли бы объяснить низкий уровень нейтринных потоков, регистрируемых на Земле.

Одна из таких гипотез предполагает, что в недрах Солнца периодически происходит резкое перемешивание вещества, температура падает, интенсивность термоядерных реакций уменьшается, а значит, уменьшается и поток нейтрино. Если принять эту гипотезу, то Девису просто не повезло, не в ту эпоху он занялся измерениями — надо было взяться за это дело на несколько миллионов лет раньше или на несколько миллионов лет позже.

Снижение солнечной активности после перемешивания сказывается на тепловом режиме планет, возможно, именно оно и было причиной ледниковых периодов на Земле. При этом нужно учесть, что нейтрино быстро, без задержки пробираются через Солнце (слабые взаимодействия!), а тепловые излучения движутся к поверхности Солнца очень медленно.

А вот другая гипотеза, ее выдвинул академик Б. М. Понтекорво. Нам известны два вида нейтрино — их называют электронными и мюонными с учетом реакций, в которых эти нейтрино участвуют. В солнечных циклах рождаются электронные нейтрино, и только их умеют обнаруживать хлор-аргоновые детекторы. Но есть повод предположить, что нейтрино осциллирует, что оно переходит из одного вида в другой, подобно тому, скажем, как в электромагнитной волне или в колебательном контуре энергия перекачивается из электрического поля в магнитное и обратно. Если это так, то вполне вероятно, что вылетевшие из Солнца электронные нейтрино по пути превращаются в мюонные нейтрино, а их хлор-аргоновый детектор просто не замечает.

Теперь о самом, пожалуй, главном недосмотре сторонников второго солнечного кризиса: эксперименты Девиса ни в коем случае нельзя отнести ко всему комплексу солнечных циклов, так как многие нейтрино в этих экспериментах в принципе не могли быть обнаружены. Солнечные нейтрино рождаются в нескольких ядерных превращениях (рис. 5).

Основное из них — это рр-реакция. Нейтрино, которые появляются в этой реакции, могут иметь разную энергию, но не более 0,4 МэВ. И поэтому хлор-аргоновый детектор не может зарегистрировать нейтрино от рр-реакции— порог чувствительности этого детектора 0,816 МэВ. Иными словами, хлор может превратиться в аргон лишь в том случае, если за это дело возьмется нейтрино с энергией более 0,816 МэВ, а нейтрино рр-реакции для этого слишком слабы. Более того, оказывается, что из-за сложных процессов внутри ядра 0,816 МэВ — это, если можно так сказать, лишь формальный порог; реально же для «срабатывания» хлора нужны нейтрино с энергией около 5 МэВ. А поэтому результаты Девиса относятся лишь к двум веточкам солнечного термояда, эти результаты никак не приговор, а лишь призыв к размышлениям и исследованиям.

Действие седьмое. Мы отправляемся на Северный Кавказ, на строительство первой советской нейтринной обсерватории. Приборы для регистрации солнечных нейтрино и некоторых других частиц, прибывающих из космоса, размещают глубоко под землей. Земная толща — это фильтр, он защищает детекторы от «лишних» космических лучей, которые, в частности, могут вызвать ложное «срабатывание» атомов хлора. Девис установил свою аппаратуру в старой заброшенной шахте глубиной 1,5 км. Сейчас строятся нейтринные телескопы в ответвлении автомобильного тоннеля под Монбланом.

Обсуждается и очень дорогой проект ДЮМАНД — укрытая в океане под многометровой толщей воды система фотоэлектронных приборов, которые караулят слабые вспышки света, вызванные в самой морской воде космическими частицами. Проект обсуждается уже много лет, но к его осуществлению пока еще никто не приступает. Очень возможно, что путь от идеи этого проекта к реальности резко сократится благодаря сравнительно недавнему предложению советских физиков Г. Аскарьяна и Б. Долгошеина. Они предложили регистрировать не световые вспышки, а звуковые импульсы, сопровождающие рождение ливней космических частиц в воде. Такие ливни возникают, когда нейтрино гигантских энергий разрушает ядро. Регистрировать звук значительно удобней, чем свет, в частности, потому, что звуковая волна хорошо распространяется в воде и индикаторы звука можно располагать на значительно большем расстоянии, чем индикаторы света, увеличив тем самым общий объем подводного детектора. Или можно уменьшить число индикаторов, сделать «сеть» более редкой при том же контролируемом объеме роды. Именно от этого объема зависит число пойманных нейтрино Предложение советских физиков вызвало большой интерес, предполагается, что оно может в сотни и тысячи раз повысить эффективность системы.

Уникальное сооружение нейтринной астрофизики создается в нашей стране на Северном Кавказе — в долине реки Баксан строится крупная многоцелевая нейтринная обсерватория Института ядерных исследований АН СССР, для нее сооружается четырехкилометровый горизонтальный тоннель с большими лабораторными залами.

Это будут лаборатории с чрезвычайно низким и даже рекордно низким уровнем радиационного фона (рис. 2) — с верху они закрыты тысячеметровой гранитной крышей, а изнутри облицованы особыми сортами бетона с очень слабой собственной радиоактивностью. А снижение фона есть прямой путь к регистрации слабых «сигналов» — в тихой комнате можно услышать тиканье карманных часов, но вряд ли это удастся сделать в салоне самолета.

Нашу экскурсию на Баксанскую станцию комментируют директор Института академик АН Грузинской ССР А. Н. Тавхелидзе, члены-корреспонденты АН СССР Г. Т. Зацепин и А. Е. Чудаков, доктор физико-математических наук А. А. Поманский — физики, отдавшие новому делу годы жизни и мегаджоули энергии. Здесь наверняка уместно вспомнить и коллектив Института ядерных исследований, взявший на себя большой комплекс работ — от расчета сечений ядерных реакций до организации строительства в горных условиях, с тем чтобы крупнейшие в мире установки нейтринной астрофизики стали реальностью. И конечно же, когда речь заходит о Баксанской обсерватории, непременно должно быть названо имя секретаря Отделения ядерной физики АН СССР академика М. А. Маркова, который от самого начала вдохновляет и направляет эти работы как в чисто научном, так и в организационном плане.

Осмотрев входные тоннели и вспомогательные помещения (обсерватория— это не только научные приборы, это еще и системы энергоснабжения, искусственного холода, отопления, вентиляции, обработки данных, транспорта, связи, пожарной безопасности), мы попадаем в первый лабораторный зал. Это владения огромной многоэтажной установки для регистрации космических мю-мезонов высоких энергий и некоторых энергичных нейтрино. Каждый из 3200 детекторов установки (рис. 3) — это бак с жидким сцинтиллятором, в который неотрывно всматривается электронный глаз ФЭУ — фотоэлектронного умножителя. Под действием прорвавшейся в детектор частицы в нем может произойти событие, так физики называют интересующую их ядерную реакцию. В веществе сцинтиллятора событие вызовет слабую световую вспышку, вспышку заметит ФЭУ и выдаст электрический импульс в систему регистрации; если частица прошьет несколько детекторов, то можно будет определить, откуда она пришла и с какой скоростью. Этот гигантский сцинтилляционный телескоп будет участвовать в целом комплексе астрофизических исследований.

Во второй лабораторный зал мы не пойдем по уважительной, наверное, причине — туда еще не добрались строители, и этот зал существует пока лишь в виде чертежей, планов и опытных образцов аппаратуры. Мы видим действующую модель будущего гигантского хлор-аргонового детектора — это будет бак высотой с трехэтажный дом и длиной более 30 м (рис. 2, А). В баке — 3000 т тетрахлорэтилена, в 5 раз больше, чем у Девиса; это позволит более точно оценить количество некоторых разновидностей солнечных нейтрино.

На действующей модели видны все основные этапы извлечения атомов аргона (рис. 4): тетрахлорэтилен продувается гелием и из бака выходит смесь газов; в нее входят и единичные атомы аргона-37, образовавшиеся из хлора под действием нейтрино; для начала смесь газов охлаждают, тетрахлорэтилен конденсируется и возвращается обратно в бак; оставшиеся газы дополнительно очищаются, проходя через молекулярное сито; затем все инертные газы собирают в большую ловушку из активированного угля; сравнительно маленькие атомы гелия беспрепятственно проходят через ловушку и возвращаются обратно в бак. Это уже физика плюс экономика. После нескольких недель экспонирования, нескольких часов продувки систему на короткое время перекрывает заслонкой 31 и перегоняют смесь газов в малую ловушку, а ее переносят в другую установку; здесь хромотографическая колонка отделяет аргон от других инертных газов, а титановый фильтр окончательно очищает его; аргон-37 — элемент неустойчивый, он постепенно распадается, и каждый распад регистрируется сверхчувствительным счетчиком; чтобы исключить ложные срабатывания счетчика, его защищают массивными металлическими экранами и, кроме того, окружают сцинтилляционными счетчиками. Если они срабатывают одновременно с основным, значит, событие вызвано какой-то внешней помехой и импульс не засчитывается. Импульс засчитывается только в том случае, если при срабатывании основного счетчика остальные молчат. Это значит, что срабатывание вызвано не внешним, а внутренним событием — распадом аргона.

Даже в этом гигантском детекторе солнечные нейтрино будут создавать в неделю всего несколько атомов аргона-37. Чтобы собралось заметное количество этих атомов, хлор приходится экспонировать около месяца (чем меньше яркость объекта, тем большую выдержку устанавливает фотограф). Подсчет числа атомов тоже длится довольно долго — период полураспада аргона-37 почти 35 дней.

Во втором лабораторном зале будут еще два нейтринных телескопа (рис. 2, Б, В): один — с галлиево-германиевым детектором, а второй — с большим сцинтилляционным детектором, он позволит изучать вспышки сверхновых звезд по резким всплескам нейтринного излучения.

В галлиево-германиевом детекторе (его предложили и обосновали советские физики) в принципе происходит то же, что и в хлор-аргоновом: нейтрино превращает атом галлия-71 в атом германия-71 обычным своим приемом — превратив один из нейтронов атомного ядра в протон, т. е. увеличив на единицу положительный заряд ядра (рис. 6); германий-71 выделяют подобно тому, как раньше выделяли аргон; подсчитывают все атомы германия и узнают таким образом число пойманных нейтрино. Но вот что очень важно — порог «срабатывания» у галлия примерно 0,2 МэВ, т. е. значительно ниже, чем у хлора. И практически все виды солнечных нейтрино, в том числе и нейтрино от рр-реакции, могут быть зарегистрированы галлиево-германиевым детектором — лишь несколько человек в мире могут перепрыгнуть через двухметровый барьер, но перешагнуть через полуметровый барьерчик сумеет любой из нас. Очень может быть, что именно этот инструмент внесет ясность в нынешнюю, мягко говоря, запутанную картину солнечных циклов.

Эпилог. Каждый, кто когда-нибудь пытался отвернуть большой проржавевший болт перочинным ножичком, понял, наверное, что такое инструмент. Хороший, совершенный инструмент — это первая мечта и первая забота токаря, монтажника, хирурга. И конечно, ученого, исследователя — как часто он видит путь к великому открытию и только ждет инструмента, без которого невозможно продвинуться от драматичного «я так думаю» к спокойному «я это знаю».

Физики связывают немало надежд с созданием уникальных научных инструментов Баксанской нейтринной обсерватории. Вот лишь несколько строк из последних научных публикаций:

— новые нейтринные телескопы помогут понять важные детали процессов, которые происходят в центре Солнца, определить структуру его глубинных областей, получить точные данные о давлении и температуре;

— могут появиться новые данные для прогнозов солнечной активности;

— могут выясниться подробности эволюции звезд, такие, например, как образование массивного железного ядра, взрыв сверхновой или катастрофическое сжатие звезды в «черную дыру»;

— скорее всего только нейтринная астрономия поможет выяснить, осциллируют ли нейтрино: нейтрино от ускорителей слишком быстро попадают в детектор, заметные изменения свойств нейтрино за такое короткое время, возможно, и не успеют произойти;

— нейтринные телескопы, возможно, обнаружат некоторый остаточный нейтринный фон, нейтрино гигантских энергий, блуждающие в космосе миллиарды лет и хранящие сведения о далеком прошлом Вселенной — об эпохе формирования галактик и звезд.

И еще одна возможность, в последнее время о ней часто напоминают зловещие слова «энергетический кризис».

Сейчас, как медные пятаки на ладони, мы считаем оставшиеся на Земле запасы угля и нефти, в то время как где-то в наших карманах лежит банкнота миллионного достоинства. Вот несколько цифр: если бы Солнце светило за счет сжигания химического топлива и целиком состояло из чистого кислорода и лучших сортов угля, то всей солнечной массы хватило бы лишь на 1500 лет горения. В то же время термоядерные реакции, израсходовав лишь 1 % солнечной массы, могли бы поддерживать нынешнюю яркость нашей звезды на протяжении 10 млрд. лет.

Изучение солнечного термояда, проникновение в недра других звезд, в их термоядерные реакторы — это не только прорисовка важнейших деталей в нашей картине мира. Вполне вероятно, что это еще и шаги к решению первейшей житейской задачи — к изысканию новых источников энергии.

Экспедиция за короной

Природа как будто специально по заказу астрономов подогнала размеры Солнца и Луны, открыв тем самым возможность важных исследований во время солнечных затмений.

Мы всегда торопимся, люди атомного века. Мы всегда торопимся, нам всегда некогда. Мы годами не можем выкроить нескольких минут, чтобы поднять голову и взглянуть на звездное небо — на эту бесконечную арену, где Миры разыгрывают свой фантастический спектакль, или чтобы проводить взглядом уходящий за горизонт огненный шар — пылающую звезду Солнце, которая дает нам жизнь. Только сенсационные сообщения о грозных шутках природы — о кометах, о столкновении галактик, о падении гигантских метеоритов на какое-то мгновение отодвигают в нашем сознании земные дела на второй план и заставляют вспомнить о большом космосе, в котором песчинкой несется планета Земля.

Удобный, во всяком случае, необременительный повод для обращения к космической тематике — солнечные затмения. Необременительный потому, что полное солнечное затмение в данном географическом районе — явление довольно редкое. Даже для такой огромной страны, как наша, перерывы между затмениями достаточно велики — на территории Советского Союза полные затмения наблюдаются обычно лишь раз в несколько лет.

Если для большинства людей затмение — это красивое зрелище и повод к размышлениям, то для астрономов оно хотя и очень редкий, но зато очень и очень удачный объект исследований. Несколько слов об этом самом «очень и очень».

Когда вам понадобится пример поразительного случайного совпадения, можете смело обратиться к схеме солнечного затмения. Хорошо известно, что затмение происходит тогда, когда Луна становится между Землей и Солнцем и закрывает для земного наблюдателя солнечный диск. Луна в этом случае напоминает картонную заслонку, которую вы держите недалеко от глаз для того, чтобы прикрыть очень далекий яркий источник света. И вот что поразительно: сам этот источник (Солнце) и прикрывающая его картонка (Луна) видятся вам одинаковыми, хотя в действительности они резко различаются по размерам. Диаметр Солнца dс составляет примерно 1,4 млн. км, диаметр Луны dл — всего около 3,5 тыс. км, т. е. соотношение dс:dл примерно равно 400. Приблизительно таким же получается соотношение между средними расстояниями Земля — Солнце (lзс ~= 150 000 000 км) и Земля — Луна (lзл ~= 380 000 км). В том-то и состоит поразительное, почти неправдоподобное совпадение, что в процессе эволюции Солнечной системы все перечисленные величины непонятно почему оказались связанными равенством

dс:dл = lзc:lзл

Итак, Солнце примерно в 400 раз больше Луны (по диаметру), но во столько же раз дальше от Земли, и поэтому оба объекта видятся нам одинаковыми. Именно поэтому Солнце во время затмения очень и очень удачный объект исследований: Луна аккуратно закрывает его, оставляя в чистом виде лишь корону. (Здесь необходима оговорка: расстояния lзc и lзл в некоторых пределах меняются. Поэтому в ряде случаев наблюдается так называемое кольцеобразное затмение, когда Солнце закрыто Луной не полностью и видно узкое — толщиной не более 2 % от закрытой части — яркое кольцо солнечного диска.)

Как видите, в отношении «согласования» размеров Солнца и Луны и расстояний до них природа неплохо поработала на астрономов. Но она явно не довела своего дела до конца, не совместила плоскости вращения Луны вокруг Земли и Земли вокруг Солнца. Если бы Земля и Луна вращались в одной плоскости, то мы наблюдали бы полное солнечное затмение каждый месяц. Пока же ученые имеют возможность наблюдать это интересное явление, как правило, с перерывами в несколько лет, и практически каждое затмение привлекает большое число научных экспедиций.

О своей работе во время одного из солнечных затмений рассказывает руководитель экспедиции Государственного астрономического института имени П. К. Штернберга (ГАИШ) профессор Г. Ф. Ситник:

— Скажите, пожалуйста, Григорий Федорович, сохранили ли свое значение наблюдения во время затмений? Не уменьшилась ли их роль в связи с развитием техники наблюдений за «нормальным» Солнцем, не закрытым Луной?

— В последнее время в основном благодаря созданию новой совершенной аппаратуры действительно появились дополнительные возможности исследования незатемненного Солнца. И сейчас в любое время можно проводить ряд важных измерений, которые раньше делались только во время затмений. Однако это не уменьшило роли затмений хотя бы потому, что они нужны для корректировки новых приборов и методов, а также для определения комплексов измерений, которые можно производить в период между затмениями. И еще, конечно, для проверки полученных результатов.

Кроме того, затмения резко улучшают условия наблюдений, позволяют получить результаты, практически недостижимые во внезатменное время. Затмение прежде всего позволяет избавиться от рассеянного света самой фотосферы, т. е. той части Солнца, которая образует его яркую, видимую поверхность, образует то, что мы называем солнечным диском. А избавившись от «подсветки» фотосферы, мы получаем возможность производить очень тонкие исследования солнечной атмосферы, в частности таких ее слоев, как корона и хромосфера. Даже такой популярный прибор, как внезатменный коронограф, лишь сильно ослабляет рассеянный свет фотосферы, в то время как затмение полностью устраняет эту подсветку.

Для большого числа измерений и исследований монополия солнечных затмений неоспорима. В качестве примера, может быть, не очень типичного, но зато наглядного, назову проверку теории относительности. Фотографируя определенный участок звездного неба вблизи «прикрытого» Солнца (при ярком Солнце звезды просто не видны) и ночью, можно по смещению звезд на снимках определить, насколько Солнце отклоняет их лучи — такое отклонение было предсказано Эйнштейном в его теории относительности. В этих исследованиях положительный результат (т. е. доказывающий, что теория относительности верна) был получен еще в 1922 г. и с тех пор неоднократно подтверждался. Однако не сразу удалось устранить значительные количественные расхождения, и эти тонкие и сложные измерения продолжаются.

Еще пример. Уже много лет астрономы пытаются обнаружить гипотетическую планету Вулкан, которая, если она, конечно, существует, находится настолько близко к Солнцу, что может быть замечена только во время затмения.

Возможно, есть еще одно, может быть, не самое важное, но, на наш взгляд, существенное достоинство затменных наблюдений: во время солнечного затмения, особенно после его центральной фазы, несколько понижается температура Земли и ослабляются местные тепловые колебания в земной атмосфере, которые, как известно, сильно искажают результаты астрономических наблюдений.

— Расскажите, пожалуйста, какие измерения производятся во время затмений и, в частности, какие измерения производила ваша экспедиция.

— Полный список конкретных наблюдений и измерений окажется слишком большим. Каждая группа исследователей старается разнообразить свою программу и работает над этим в течение долгого времени. Общие же направления исследований таковы: детальное изучение структуры и спектра различных участков Солнца, радиоастрономические наблюдения и регистрация влияния Солнца на различные процессы в околоземном пространстве.

Наша экспедиция работала лишь в первом направлении и выполнила довольно обширную программу. В качестве примера назову фотографирование короны и хромосферы через интерферометр (иногда говорят «эталон») Фабри — Перо. Основа этого прибора— две идеально обработанные и очень точно установленные полупрозрачные пластинки. Свет, распространяясь между ними, многократно отражается, и в итоге на снимке, сделанном через эталон Фабри — Перо, оказывается сложная интерференционная картина объекта, в нашем случае короны. На этой картине хорошо видны светлые и темные полосы, напоминающие веер, — это, разумеется, не какие-то невидимые наблюдателю выбросы солнечного вещества. Эти полосы появляются потому, что монохроматический свет (с помощью фильтров выделяется только одна световая волна — 5303 Å) от некоторых участков короны как бы усиливается интерферометром, а от других участков — ослабляется.

Можно представить себе, какой была бы эта картина в идеальном случае, если бы вся корона представляла собой во всех отношениях однородный излучатель света. И поэтому, изучая реальную фотографию, можно судить о некоторых процессах в том или ином участке короны. Например, об изменении средней скорости молекул, излучающих волну — 5303 Å, которое за счет эффекта Допплера приводит к некоторому изменению самой этой волны. Таким образом, полученная фотография позволяет как бы сканировать корону, судить о физических процессах в отдельных ее точках.

— А все ли ваши наблюдения были удачны?

— Не совсем. Мы, например, не смогли получить качественных снимков хромосферы, сделанных с интерферометром Фабри — Перо. На этих снимках также получились интерференционные полосы. Однако из-за неудачно выбранной экспозиции полосы эти трудноразличимы. Мы успели сделать два снимка — с экспозицией 5 и 15 с. Первый из них оказался полностью, а второй частично недодержанным. Нужно было бы сделать еще один снимок с большей экспозицией, но на него уже не хватило времени.

— Иными словами, время затмения для наблюдателей очень дорого…

— Это поистине бесценное время. Об этом очень хорошо рассказал известный астроном Д. Мензел в своей книге «Наше Солнце». Вот что он пишет: «Подготовка экспедиции занимает месяцы напряженной работы. Чем неприступнее место (создается впечатление, что затмения упорно выбирают пустынные области), тем больше необходимо застраховать себя от всяких возможных случайностей. Конечно, многие ученые желают только увидеть явление и едут с небольшой фотокамерой. Но полностью снаряженная экспедиция должна везти с собой 10–20 т всевозможного оборудования. Напряженность предварительной работы, неизбежные препятствия, тревоги по поводу возможной непогоды усложняют задачу. В момент полной фазы астроном часто настолько занят, что хорошо, если он может урвать какие-нибудь две свободные секунды, чтобы мельком взглянуть на корону. А если погода во время затмения окажется облачной, то месяцы усилий будут просто потеряны». Думаю, что нарисованная картина справедлива для всех экспедиций.

— Насколько результативны усилия наблюдателей? Дают ли наблюдения затмений какие-либо фундаментальные научные результаты?

— Такие результаты получались неоднократно. Так, например, в свое время затмения позволили определить, что наши земные сутки постепенно удлиняются, правда, на ничтожную величину — на тысячную долю секунды в столетие. Во время затмений удалось установить ряд важных зависимостей между процессами на Солнце и состоянием земной ионосферы, которая в сильнейшей степени влияет на распространение радиоволн. Несомненно, и сейчас ценная информация, которую дают солнечные затмения, складываясь по крупицам, готовит фундамент для новых важных открытий, касающихся физики Солнца.

Звезда, дающая нам жизнь, — наше Солнце… Мы уже многое знаем о нем благодаря изобретательности наблюдателей и смелости теоретиков. В то же время многие солнечные механизмы — от второстепенных до принципиальных, определяющих жизнь всей Солнечной системы, — остаются для нас тайной.

Но что такое тайна?

Как хорошо сказал замечательный физик Вильям Крукс, тайна — это всего лишь задача, которую нужно решить.

На старт выходят чемпионы

На Северном Кавказе в специальной астрофизической обсерватории (САО) Академии наук работают уникальные инструменты — самый большой в мире оптический телескоп БТА и гигантский радиотелескоп РАТАН-600.

Неуемная страсть познания записана, наверное, в наших генах, у человеческой пытливости, скорее всего, та же природа, что у голода или жажды, у механизмов сохранения и продления жизни. Бескорыстным «знать, чтобы знать» неслышно движет мудрое «знать, чтобы жить» и щедро платит человечеству за добытые знания.

Сегодня, как никогда, внимание добытчиков знания приковано к гигантской звездной арене, к феерическим спектаклям, которые прокручивает природа, с легкостью двигая целыми мирами. Всматриваясь в звездное небо, астрофизики надеются ответить на вопросы мировоззренческие, проверить свои модели мира. Всматриваясь в звездное небо, астрофизики надеются ответить и на вопросы практические — многие эксперименты с веществом, полями, энергией, которые сами собой идут в космических лабораториях, земным экспериментаторам пока недоступны.

Оправдаются ли надежды? В огромной мере это зависит от инструментов, которыми вооружены наблюдатели, в частности от размера оптических телескопов, от площади их главной линзы (телескоп-рефрактор) или светоприемного зеркала (телескоп-рефлектор). Арифметика здесь простая: чем больше площадь зеркала или линзы, тем больше они собирают световой энергии, создавая изображение звезды (чем больше площадь паруса, тем больше энергии отбирает он у ветра), и, следовательно, тем более слабые световые источники можно увидеть в телескоп. А за этим следует целая цепочка других замечательных «можно». Например, такое: увеличивая размеры зеркала (линзы), можно видеть более далекие объекты, отодвигая тем самым видимую границу Вселенной. Или такое: чем больше света собирает зеркало (линза), тем меньшая экспозиция нужна при фотографировании звезды, тем больше шансов выявить переменность ее свечения, за которой могут стоять чрезвычайно интересные детали, вплоть до планетных систем или «черных дыр».

Стремление астрофизиков иметь большие телескопы ограничивается реальными возможностями телескопостроителей, разумно обоснованному «хотелось бы…» противостоит холодное «сложно… дорого… технически невозможно…». О том, насколько велики трудности на пути создания больших телескопов, говорят, в частности, такие факты: в 1897 г. был построен телескоп-рефрактор с диаметром объектива 102 см, до сих пор он остается чемпионом в своем классе; во всем мире известно лишь около десятка телескопов-рефлекторов с диаметром зеркала более 2,5 м, многие технически развитые страны не перешагнули еще этот рубеж; телескоп-рефлектор Крымской астрофизической обсерватории АН СССР с зеркалом 2,6 м полтора десятилетия оставался крупнейшим в Европе; почти 28 лет держал мировое первенство рефлектор с пятиметровым зеркалом, установленный в обсерватории Маунт Паломар (США), недосягаемый, казалось, шедевр оптической техники.

Но вот несколько лет назад, а точнее, в канун 1976 г. в самые предпраздничные, предновогодние дни, в мировой науке произошло событие чрезвычайной важности — в Специальной астрофизической обсерватории (САО) Академии наук СССР вступил в строй телескоп-рефлектор БТА с диаметром зеркала 6 м. Завершился пятнадцатилетний труд многих научных и производственных коллективов. Государственная комиссия, возглавляемая академиком А. М. Прохоровым, подписала акт о приемке всего комплекса БТА с оценкой «отлично». Новый мировой чемпион вышел на старт исследования Вселенной. О некоторых возможностях этого уникального инструмента рассказывает директор Специальной астрофизической обсерватории АН СССР доктор физико-математических наук Иван Михеевич Копылов:

— Поразительные успехи космической техники последних лет сделали реальностью внеатмосферную астрономию, т. е. изучение звездного неба инструментами, вынесенными за пределы земной атмосферы. Для ряда участков спектра внеатмосферные наблюдения навсегда сохранят свою монополию. Так, например, рентгеновские и гамма-лучи, которые приходят от некоторых объектов, вообще не пробивают атмосферу, регистрировать эти излучения могут лишь приборы, поднятые на десятки километров над Землей. Немало достоинств имеют внеатмосферные наблюдения в оптическом диапазоне, т. е. наблюдения с помощью телескопов, установленных на космических кораблях или на Луне, — даже небольшой телескоп, если ему не мешает земная атмосфера, может увидеть больше, чем гигант, установленный на Земле. И какое-то время даже бытовало мнение, что поэтому нет смысла вкладывать средства в сложные и большие наземные телескопы. К счастью, мнение это продержалось недолго и не успело причинить заметного вреда. Сейчас же всем ясно, что оба направления — внеатмосферная астрономия и наземная — должны развиваться параллельно, взаимно дополняя друг друга. При этом решающими остаются традиционные достоинства наземного телескопа — его можно оснастить разнообразной исследовательской аппаратурой, оперативно менять программы наблюдений, предоставлять возможность работать на телескопе различным коллективам исследователей, изучающим самые разные астрофизические проблемы. На БТА сделано многое, чтобы реализовать эти достоинства в полной мере.

Оптическая схема БТА позволяет использовать инструмент в нескольких режимах, в частности иметь пять «ступенек» фокусного расстояния — от 24 м до примерно 350 м; поле зрения при этом меняется от 1 до 10 угловых минут, а относительное отверстие — от 1:4 до 1:58 Телескоп оснащен целой гаммой спектрографов, каждый из которых сам по себе представляет сложный исследовательский прибор с совершенной оптикой и электроникой. Для иллюстрации отмечу, что одно из зеркал основного звездного спектрографа ОЗСП имеет диаметр 2,05 м; подобное зеркало само могло бы послужить основой большого телескопа.

Основные возможности БТА, конечно, определяет его главное шестиметровое зеркало. Оно должно позволить наблюдательной астрономии заметно продвинуться вперед по сравнению с достижениями недавнего мирового чемпиона — пятиметрового паломарского рефлектора. Вот некоторые цифры, показывающие, что должно дать увеличение диаметра зеркала на 1 м. Площадь зеркала возрастает примерно в 1,45 раза, и во столько же раз увеличивается улавливаемая им световая энергия. Это значит, что примерно на 30–40 % увеличится расстояние, на котором можно наблюдать слабые звездные объекты. Вместо расстояний в 5–6 млрд. св. лет, которые до сих пор были доступны оптической астрономии, мы сможем, по видимому, заглянуть на расстояния 8–9 млрд. св. лет. Доступный наблюдениям объем звездного мира зависит от куба этого расстояния, и можно предположить, что число видимых слабых объектов Вселенной увеличится в 1,6–1,7 раза, а может быть, даже в 2 раза, потому что условия наблюдений, само небо, как говорят астрономы, в Зеленчукской, по-видимому, лучше, чем в районе горы Паломар.

Приведенные цифры лишь в некоторой степени характеризуют те новые возможности, которые БТА открывает перед астрофизиками, возможности и количественные, и качественные. Инструмент позволит значительно более тщательно изучить особенности двойных звезд и иных звездных систем, в частности систем, в которых подозревают существование такого экзотического объекта, как «черная дыра». Новые возможности появятся для изучения тонких механизмов звездной энергетики, процессов рождения и умирания звезд, развития галактик. Может быть, удастся продвинуться и в понимании природы наиболее далеких жителей Вселенной — квазаров. Новую информацию, по-видимому, удастся получить и о самых близких к нам космических телах — планетах Солнечной системы. Даже в космических экспериментах сможет принять участие БТА, например, контролируя полет межпланетных станций, помогая определить их звездные координаты.

Уже на первых снимках, полученных на БТА, удалось увидеть объекты 23,5 звездной величины, а вскоре и 25 величины.

Не хотелось бы, чтобы о БТА сложилось представление просто как о большом телескопе. БТА — это огромный, сложный комплекс, комплекс оптический, механический, теплотехнический, электрический, электронный. Молодой коллектив САО делает все возможное, чтобы созданный всей страной уникальный астрофизический инструмент во всю свою силу работал на науку.

Вряд ли найдется человек, которому удалось бы уйти от наивных «почему?» касательно размеров телескопа. Действительно, почему 5 м, почему 6? Почему не 10, не 15, не 50? Почему нельзя построить гигантское зеркало размером со стадион? Например, сварить его из полированных металлических листов, подобно тому как мы свариваем корпуса супертанкеров?

Ответ на эти «почему?» во всех случаях должен начинаться с напоминания: телескоп — прибор оптический, его линзы или зеркала должны сфокусировать, собрать в точку не что иное, как свет, т. е. электромагнитные колебания с длиной волны меньше стотысячной доли миллиметра. Значит, еще меньше должны быть неровности на поверхности зеркала — морская волна легко перекатывается через небольшие камешки, не замечая их, но разбивается в брызги, наткнувшись на скалу, соизмеримую с длиной волны. Не должны выходить за пределы ничтожных долей миллиметра и изменения формы зеркала, например, из-за перераспределения механической нагрузки при повороте трубы телескопа или из-за перепадов температуры.

Заманчивая идея большого металлического зеркала проваливается с треском после того, как прикинешь, что при изменении температуры всего на 1 °C размеры пятиметрового металлического зеркала изменятся на совершенно недопустимую величину — на доли миллиметра. Температурная стабильность — одно из решающих «за» в пользу больших зеркал из особых сортов стекла. А необходимость с высочайшей точностью сохранять геометрию зеркала — одно из основных препятствий на пути создания крупных телескопов. Современный телескоп — это не просто подзорная труба, это высокоточный измерительный инструмент, ему прежде всего нужно верить.

Многие проблемы, которые приходится решать телескопостроителям, скрыты за спокойными терминами их профессионального словаря. Вот некоторые из них.

«Разгрузка зеркала» — нужно создать такие механизмы крепления зеркала, чтобы при его повороте точно перераспределяло огромный вес и не возникло заметных механических деформаций.

«Монтировка телескопа» — Земля движется по своей орбите и вращается вокруг своей оси, а поэтому движется и звездное небо над головой наблюдателя. И нужно найти способ установки трубы телескопа, найти такую его монтировку (основание с системой осей), чтобы можно было неотступно следовать за звездой, — ее изображение должно оставаться неподвижным на фотопластинке, на входе спектрографа или в поле зрения телевизионной камеры.

«Система управления» — когда-то наблюдатель вручную поворачивал свой сравнительно небольшой телескоп, следуя за звездой; в таком гиганте, как БТА, только электроника может справиться с этой задачей; система гидирования (ведения) БТА — это вспомогательный телескоп, в который всматривается передающая телевизионная камера; она направляет информацию в электронную вычислительную машину, и та уже управляет системой электропривода. Возможен и такой режим: ЭВМ сама управляет телескопом, без гида, вычисляя координаты точки, куда нужно навести трубу.

«Отлив заготовки» — технология отлива главного зеркала БТА была выбрана из 11 предложенных вариантов; был построен специальный цех со сложной печью, платиновыми трубопроводами, мостовыми кранами; технологический процесс отрабатывался на экспериментальной отливке.

«Отжиг заготовки» — этот процесс длился 2 года и 6 дней, все это время автоматика с высокой точностью выдерживала заданные режимы нагрева и охлаждения стекла; в некоторые периоды охлаждение шло со скоростью 0,03 °C в час.

«Обработка заготовки» — она велась алмазным инструментом на специально построенном карусельном станке КУ-158; в общей сложности был удален припуск массой около 28 т; наиболее сложными были операции полирования и шлифовки, связанные с получением нужной параболической поверхности, обработка зеркала длилась несколько лет, она прерывалась для тщательного контроля форм поверхности, совершенствования оборудования; огромный труд коллектива оптиков завершился в середине 1974 г.

«Имитатор зеркала» — это железобетонный диск с размерами и массой главного зеркала; имитатор использовался при предварительной сборке телескопов и для генеральной репетиции перевозки главного зеркала с Лыткаринского завода оптического стекла (Московская область) к месту установки в САО.

«Алюминирование» — огромное шестиметровое стекло стало зеркалом БТА только после того, как его покрыли тончайшим слоем алюминия. Толщина покрытия 0,0001 мм, разница в толщине слоя не более 0,000 008 мм. Вакуумная камера для напыления металла находится под куполом самой башни телескопа — алюминиевое покрытие приходится периодически обновлять. Любопытная подробность, которая, возможно, осталась незамеченной: алюминируется верхняя, параболическая поверхность зеркала и, таким образом, основное, казалось бы, свойство стекла— прозрачность — вообще не используется. Стекло как материал для зеркала в данном случае выбрано совсем за другие его качества, прежде всего за сравнительно малый температурный коэффициент расширения.

«Аттестация» — в течение нескольких месяцев комиссия из компетентных специалистов, назначенных Академией наук, заводами-изготовителями и разработчиками телескопа, тщательно исследовала все характеристики главного зеркала; для аттестации зеркала БТА был разработан комплекс методов, взаимно дополняющих друг друга, и комплекс высокоточных приборов, таких, как неравноплечный лазерный интерферометр, специальные фотометры, корректоры, теневые приборы; были проведены теоретические исследования методов контроля, разработан математический аппарат для оценки результатов.

Уникальный телескоп БТА создавали многие научные коллективы, многие предприятия страны, головной организацией было Ленинградское оптико-механическое объединение — ЛОМО.

Создателям БТА пришлось заново решать многие конструкторские, технологические, производственные, организационные задания, много раз приходилось переходить границу неизвестного. О некоторых деталях этой огромной работы рассказывает главный конструктор телескопа, лауреат Ленинской премии, доктор технических наук Баграт Константинович Иоаннисиани:

— Рассказывая о разработке и создании БТА, часто приходится произносить слово «впервые» — многие задачи конструкторам и технологам до этого вообще не приходилось решать, принятые решения не имеют аналогов, другие в мировой практике решались совсем по-иному. Ну и, наконец, размеры инструмента придавали любой проблеме новое качество.

Возьмем, к примеру, монтировку. До сих пор для крупных телескопов всегда выбиралась только экваториальная монтировка, при которой ось инструмента параллельна земной оси, т. е. во всех случаях, для всех мест установки телескопа, кроме полюсов Земли, его ось располагается наклонно. Достоинства такой монтировки — при отслеживании звезды труба телескопа совершает сравнительно несложное вращательное движение. Для БТА была выбрана азимутальная монтировка, точнее, одна из ее разновидностей — альтазимутальная. Этот выбор настолько важен, что система монтировки вошла в название самого телескопа — БТА означает «большой телескоп азимутальный».

При азимутальной монтировке резко упрощается конструкция телескопа, так как его ось перпендикулярна земной поверхности, иначе говоря, инструмент стоит вертикально, стоит на земле. При этом, правда, отслеживая звезду, приходится выполнять очень сложное перемещение трубы телескопа, одновременно поворачивая ее вокруг двух взаимно перпендикулярных осей — вертикальной и горизонтальной. Только современные электронные системы, включая быстродействующие ЭВМ, позволили решить эту задачу и тем самым сделали азимутальную монтировку реальностью. А она в свою очередь сделала простой и изящной кинематическую схему телескопа, его конструкция стала жесткой, симметричной, компактной, резко улучшились условия разгрузки главного зеркала.

Основную нагрузку шестисоттонной подвижной части (это добрых полтора десятка товарных вагонов) взяли на себя масляные подшипники. Подвижная часть инструмента — труба с главным зеркалом и другой оснасткой — как бы плавает на масляной пленке толщиной 0,15—0,18 мм. Систему подвеса трубы характеризуют такие цифры: чтобы повернуть всю эту махину, достаточно небольших усилий одного человека (при длине рычага 6 м). Для вращения трубы используются уникальные червячные пары (диаметр червячного колеса—5,6 м), которые и при чрезвычайно малых скоростях (1 оборот за 3 месяца) обеспечивают высокую плавность движения. В сочетании с совершенной электроникой все это позволяет автоматически навести телескоп в заданную точку с точностью до нескольких угловых секунд и отслеживать звезду с точностью до 0,1" (под таким углом видна копейка с расстояния 20 км).

Огромный комплекс сложных задач пришлось решить, добиваясь стабильности основных характеристик главного зеркала. В системе его разгрузки используется 60 механизмов, которые входят в отверстия, точно высверленные в тыльной стороне зеркала. Разгрузка рассчитана и выполнена так, что деформации, вызванные прогибами зеркала в любом его рабочем положении, не превышают 0,000 009 4 мм. Многое сделано, чтобы обеспечить постоянство температуры в башне телескопа: многослойные стены и купол, многослойные перекрытия со змеевиками, по которым идет хладоноситель, системы принудительного воздушного охлаждения телескопа и термостатирования — все это сводит к минимуму тепловые деформации главного зеркала.

То, что делается впервые, всегда сопряжено с риском, но его, конечно, стараются свести к минимуму, особенно когда речь идет о таком сложном и дорогом сооружении, как БТА. Поэтому основные технические решения тщательно взвешивались, просчитывались, прорабатывались теоретически, рассматривались все разумные их варианты. Все, что можно было предварительно проверить, проверялось. В частности, для этого был построен макет БТА — действующий телескоп с диаметром зеркала 60 см. На нем отрабатывалась система управления и подтвердилась жизненность смелой, если не сказать дерзкой, идеи азимутальной установки большого телескопа. Тщательные экспериментальные исследования предшествовали самому выбору места постройки БТА. Немало поработали имитаторы главного зеркала и при предварительной сборке телескопа на заводе, и при репетициях перевозки зеркала из Подмосковья на Кавказ. Несмотря на все это коллективы, создавшие БТА, сотни раз проходили через напряженное «как получится?», и самой высокой наградой для всех участников этой многолетней напряженной работы стал сам факт создания уникального астрофизического инструмента.

Примерно в то же время, когда вступил в строй БТА, крупнейший в мире оптический телескоп в Зеленчукской, в той же Специальной астрофизической обсерватории АН СССР начал работать и другой уникальный инструмент — РАТАН-600. Название это расшифровывается так: «Радиотелескоп Академии наук диаметром 600 м». Эти «600 м» относятся к кольцу, собранному из 895 подвижных алюминиевых отражателей, каждый размером 2x7,5 м. Та или иная часть огромного кольца («та или иная» в зависимости от участка неба, на который нужно «посмотреть») — это рефлектор радиоприемной антенны, выполняющий в принципе ту же работу, что и зеркало БТА. Рассчитан РАТАН на прием радиоволн (их, так же как и свет, излучают небесные тела) длиной от 8 мм до 30 см. По комплексу характеристик — чувствительности, диапазону волн, разрешающей способности, размерам рефлектора, управлению его диаграммой — этот инструмент не имеет равных в мире.

Микрорассказы про волны и фазы, а также про яблоко на Луне, сверхсветовые скорости и зеркало „Бонн-Бостон-Симеиз“

Совершенные методы радиоастрономии позволяют изучать детали астрофизических объектов, находящихся на краю видимой Вселенной.

Все агрегаты этой гигантской машины, разбросанные по разным континентам, должны работать согласованно, синхронно — такова сверхзадача. Причем синхронность нужна высочайшая, ее даже представить себе трудно, пользуясь нашими житейскими мерками времени: в одном из режимов каждый цикл машины длится около 4·10-11 с; за это время синхронизм в работе агрегатов — а между ними тысячи километров — должен поддерживаться с точностью в среднем до 10 12 %, по абсолютному значению до 10-25 с.

Как почувствовать, что стоит за этим «с точностью до…»? Как связать их с чем-нибудь знакомым? Автомобиль, который проносится мимо вас с недозволенной скоростью 120 км/ч, за 10-25 с пройдет расстояние (если это можно назвать расстоянием) порядка 10~20 мм, что в тысячу миллиардов раз меньше размеров самого маленького атома. Даже свет (свет!) за 10-25 с пройдет всего 0,000 000 000 000 03 мм. Теперь о процентах: 10-12 % объема Азовского моря — это банка воды; если часы, идут на 10-12 % быстрее, чем нужно, то за полмиллиона лет они уйдут вперед на 1 с.

Ко всему еще сверхточная машина должна обходиться чрезвычайно малыми порциями сырья — она перерабатывает радиосигналы, общая мощность которых примерно 10-18 Вт. Это в тысячу раз меньше, чем досталось бы одной квартире, если бы на освещение всех домов Земли расходовалась мощность одной горящей спички.

Упоминание о сырье в виде радиосигналов уже, наверное, приподняло завесу над таинственной межконтинентальной машиной. Сейчас это дело будет доведено до конца — речь идет об уникальном радиотелескопе, точнее, о радиоастрономическом комплексе, в который в разное время входили радиотелескопы разных стран. Ниже будет коротко сообщено о том, для чего создаются такие комплексы. Но прежде в порядке повторения пройденного два микроскопических рассказа на общие темы.

Микрорассказ первый: про волны. Среди бессчетного множества процессов, которые происходят в природе, физики сочли необходимым выделить несколько особых групп. В их числе волны. Независимо от физической природы — волны могут быть электромагнитные, механические, гравитационные — все они имеют общие черты. В частности, разбегаясь от места своего рождения, волны переносят не только энергию, но и информацию о тех процессах, которые их создали. Именно поэтому эволюция снабдила многочисленные свои творения разнообразными волноприемниками, волноулавливателями, вооружив тем самым живые организмы приборами для изучения окружающей обстановки. Неплохая аппаратура досталась и человеку: сверхчувствительный приемник световых волн — зрение и сверхчувствительный приемник акустических волн — слух. (Слух, кстати, в дальнейшем стал технической базой для языкового общения людей, для развития речи, а речь в свою очередь привела к поразительному совершенствованию нашего природного компьютера, к отработке новой системы мышления, где к предметам и явлениям привешены лаконичные бирки-слова. И все это началось с приемника звуковых волн…)

А теперь, быстро перелистав прекрасную повесть о том, как человек обогатил свой природный арсенал волноулавливателей, построил микроскопы и телескопы, научился видеть радиоволны и рентгеновские лучи, слышать инфразвук и ультразвук, мы остановимся на странице, где упоминаются интерферометры — эти приборы не просто улавливают волну, но и учитывают ее фазу.

Микрорассказ второй: про фазы. Чтобы познакомиться с работой интерферометра, лучше всего выбрать теплое туманное утро и выйти на берег пруда. Полный штиль, гладкая, как стекло, поверхность воды. Из-за тумана она просматривается вперед метров на 10–15, противоположного берега не видно совсем. Тишина… И вдруг прямо на берег, где вы стоите, начинают накатываться волны. Они идут одна за другой несколько минут, потом постепенно все затихает, и снова гладкая поверхность воды Что можете вы, наблюдатель, сказать о том событии, которое вызвало волны на воде? Скорее всего, на другой стороне пруда в воду свалился какой-нибудь предмет. Большой? Об этом можно судить по высоте волн, по их интенсивности — одно дело, если упал камень, и совсем другое, если, воспользовавшись туманом, в пруд свалили самосвал битого кирпича. В каком месте это случилось, откуда именно пошли волны?

На этот вопрос не ответишь, присматриваясь к одной лишь высоте волны.

Все волноулавливатели можно разделить на две группы. Одни просто регистрируют мощность, интенсивность волн — так работает глаз, отличая яркую точку от темной, так работает ухо, оценивая громкость звука. Только на интенсивность волны реагируют рентгеновская пленка, радиоприемник, фотоэкспонометр. А вот волноулавливатели второй группы, если можно так сказать, подходят к каждой волне индивидуально, следят за тем, когда какая из них пришла, в какой момент какого уровня достигла. Проще говоря, регистрируют не только уровень, но еще и фазу волны.

Слово «фаза» имеет вполне определенный житейский смысл («Эта фаза моей жизни»). Имеет оно и строгое определение физического параметра. Не вдаваясь в тонкости, введем упрощенное определение фазы — будем считать, что это тот момент времени, когда в волноприемник попадает амплитуда волны. Скажем, когда с берегом поравняется гребень волны, бегущей по воде, или когда к антенне радиоприемника подойдет самый сильный участок электрического поля, которое несет радиоволна. Стоя на берегу пруда, мы сможем с помощью точного секундомера отмечать фазу: «У этой волны фаза 7 ч 20 мин 6 с — именно в этот момент ее гребень поравнялся с кромкой берега. А у этой волны фаза 7 ч 26 мин 8 с, у следующей — 7 ч 26 мин 10 с…»

Ну а теперь до интерферометра остался один шаг: посмотрите, в какой фазе приходит волна к двум разным точкам берега — слева и справа от вас. Если волна приходит одновременно, в одной фазе, то, значит, «излучатель» находится строго напротив (рис. 1), если в левую точку волна приходит чуть раньше, с опережением по фазе, то, значит, «излучатель» находится слева (рис. 2), а если раньше приходит правая волна, «излучатель» находится справа.

Как видите, индивидуальный подход к набегающей волне, наблюдение за ее фазой позволили получить совершенно новую информацию об источнике излучений. И вообще нужно сказать, что уважительное отношение к фазе, скажем, умение собирать волны в большие коллективы не просто так, «давай! давай!..», а с учетом особенностей каждой волны, с учетом ее фазы ознаменовало в физике целую эпоху великих открытий.

Именно уважение к фазе подарило нам рентгеноструктурный анализ (сопоставляя фазы рентгеновских лучей, отраженных от разных точек кристалла, узнают его структуру), голографию (учитывая фазы световых волн, отображают объем на плоской пленке), квантовые генераторы и, в частности, лазеры (чем отличается лазер от электрической лампочки? Прежде всего тем, что в лампочке атомы излучают свет каждый сам по себе и возникает хаос, вакханалия световых волн, а в лазере совсем иная культура излучения — атомы выбрасывают световые волны согласованно, волны эти когерентны — они совпадают по фазе и действуют сообща).

Наконец, умение уважать фазу подарило нам огромный класс измерительных приборов — интерферометров (рис. 3), к числу которых относится и наш межконтинентальный радиотелескоп. Чтобы легче разобраться в его возможностях и проблемах, бросим прощальный взгляд на затянутый туманом пруд, вспомним свои интерферометрические опыты и сделаем два важных примечания: чем точнее измеряется разность фаз, тем точнее можно определить направление на излучатель волн; чем больше база интерферометра (расстояние между точками, в которых измеряется фаза), тем больше сдвиг (набег) фаз и опять-таки тем точнее можно определить направление на излучатель.

Эти примечания помогают понять, какими способами можно бороться за самую важную характеристику радиотелескопа-интерферометра — его угловую разрешающую способность, угловое разрешение, т. е. способность с высокой точностью различать источники излучений и их детали.

Лет тридцать назад, еще на заре радиоастрономии, делались первые попытки объединить несколько радиотелескопов в единую систему, но базу больше сотни километров сделать не удавалось. Многие препятствия были связаны с тем, что радиоизлучения, которые принимают антенны телескопов, имеют очень высокую частоту, а значит, время между соседними «гребнями» очень мало, мал период колебаний. Для сантиметровых волн, на которых по ряду причин удобней всего производить наблюдения, один период, т. е. один рабочий цикл интерферометра, как раз и попадает в интервал 3·10-10 — 3·10-11 с. В этом интервале находится цифра, с которой мы начали наш рассказ. И совсем уже мал сдвиг фаз — разница во времени, когда к антеннам интерферометра приходит гребень волны: чтобы измерить этот сдвиг фаз, все агрегаты комплекса, все радиотелескопы должны начинать отсчет фазы по выстрелу единого стартового пистолета, отбивающего время с точностью 10-12 % (ошибка на 1 с за полмиллиона лет).

Легко сказать «…по единому выстрелу… с точностью до 10-12 %», но как это сделать? Как это сделать, если между телескопами тысячи километров?

Для начала перечислим три способа, которые позволяют получить базу от нескольких километров до нескольких десятков километров. Высокочастотные сигналы с каждой из антенн можно передать на общий электронный блок, измеряющий разность фаз, по высокочастотному кабелю (рис. 5 на третьем листе цветной вклейки).

Можно сделать то же самое, предварительно понизив частоту обоих сигналов в индивидуальных смесителях, (рис. 6), но с использованием общего гетеродина. Наконец можно связать антенны с единым измерительным комплексом с помощью каналов радиосвязи (рис. 7). Во всех этих случаях в разных участках системы возникают дополнительные сдвиги фаз, они суммируются, что как раз и препятствует увеличению базы.

Интересный метод создания больших интерферометров предложили в 1963 г. советские радиофизики. Сущность метода состоит в том, что принимаемый сигнал прямо на месте преобразуют и записывают на магнитную пленку вместе с сигналами синхронизации, сверенными по эталонным атомным часам (рис. 8).

Таким образом получают как бы единую запись сигналов от двух или нескольких антенн — все эти сигналы привязаны к единой точке отсчета, к атомным часам, для которых как раз и характерна необходимая точность отсчета времени — что-то около 10-12 %. Потом все пленки с сигналами, привязанными к атомному времени, не спеша собирают и обрабатывают на вычислительной машине, которая учитывает все, вплоть до таких «мелочей», как вращение Земли и связанное с этим непрерывное перемещение наблюдателей по отношению к фронту волны. На основе этого метода уже не раз создавались межконтинентальные интерферометры (рис. 4), было сделано немало интересных открытий.

О некоторых работах, в которых участвовали наши радиоастрономы, рассказывает руководитель этих работ с советской стороны, руководитель лаборатории Института космических исследований АН СССР доктор физико-математических наук Леонид Иванович Матвеенко:

— В 1976 г. с участием советских исследователей было проведено семь циклов наблюдений на межконтинентальных радиоинтерферометрах. Это уже традиционные, плановые работы — они велись и раньше, будут проводиться в будущем. Первая работа 1976 г. (она длилась непрерывно более суток) прошла в феврале. В этот раз в интерферометр входили два радиотелескопа: в Хайстеке (район Бостона, США) и в Симеизе, в Крыму. Такие же циклы наблюдений были проведены в апреле и мае, но здесь уже работали радиотелескопы, расположенные в четырех точках планеты: в Тидбинбилле (Австралия, район Сиднея), в Мэриленд-Пойнте (район Вашингтона), в Биг-Пайн (вблизи Пасадены, США) и опять же в Симеизе. И наконец, пять циклов наблюдения по нескольку суток каждый (в июне, ноябре и декабре) с участием телескопов вблизи Бонна, в Хайстеке и Симеизе. Сезон 1977 г. в феврале открыл интерферометр Бонн — Симеиз — Онсала (Швеция).

Режим наблюдений, их программа очень насыщены и требуют исключительной четкости от всех участников работ. Обычно наблюдения одного объекта продолжаются 20 мин, затем пятиминутный перерыв на перестройку телескопа и снова двадцатиминутный сеанс. Сигнал, как правило, очень слаб, и его приходится долго «накапливать»; обычно период накапливания, этот квант измерений, составляет 300–400 с. Конкретные задачи наблюдений многообразны; об этом косвенно можно судить по числу исследовательских организаций — только в 1976 г. в наших работах участвовали Австрийская астрофизическая обсерватория, Институт Макса Планка (ФРГ), Массачусетский и Калифорнийский технологические институты, Смитсонианская, Хайстекская, Морская исследовательская и Национальная радиоастрономическая обсерватории, НАСА, Йельский университет (США), Крымская астрофизическая обсерватория и Институт космических исследований АН СССР. Все циклы наблюдений прошли удачно, «холостых выстрелов» не было. Это особенно радостно, потому что был впервые совершен трудный переход на очень короткую волну—1,35 см, что, в частности, позволило поднять разрешение интерферометра с 0,1 угловой миллисекунды до 0,05 миллисекунды. Оптический прибор с таким разрешением позволил бы из Москвы увидеть горошину во Владивостоке или увидеть с Земли яблоко на Луне.

Главные наши объекты — это природные мазеры, ядра галактик и совершенно загадочные до недавнего времени звездные образования — квазары.

В природных мазерах происходят в принципе те же процессы, что и в наших земных мазерах и лазерах; мощные источники энергии, скажем, излучения, идущие из области, где происходит рождение звезды, осуществляют «накачку» молекул окружающего газа — водяного пара или гидроксила; они-то и дают когерентное радиоизлучение — довольно острый и монохроматичный луч. До появления больших радиоинтерферометров это излучение приписывали большим областям пространства. Теперь же в этих областях удалось обнаружить очень компактные излучающие точки размером в десятые доли угловой миллисекунды.

Квазары долгое время представлялись этакими гигантскими полыхающими шарами с угловыми размерами в десятки и сотни миллисекунд (рис. 9). Напомним, что размеры, указанные в угловых единицах, — это есть тот телесный угол, в котором объект виден с Земли; так, например, размер Луны — 8 угловых градусов, Марса — 0,2 градуса. Чтобы перейти от угловых размеров к линейным, нужно знать расстояние до объекта. А оно не всегда известно достаточно точно, и астрономы характеризуют объект величиной, которую знают наверняка, — его угловым размером.

Но вернемся к квазарам.

У некоторых квазаров стали обнаруживаться детали, такие, например, как огромный (угловые размеры — около 20'') выброс материи («хвост») у квазара ЗС 273. Затем межконтинентальные интерферометры позволили увидеть достаточно мелкие детали квазаров (рис. 9—11).

Кроме того, наблюдая квазар с перерывом — иногда это несколько месяцев, иногда несколько недель, — часто обнаруживали, что его детали смещаются, разлетаются. С учетом примерного расстояния до квазара подсчитали скорость разлета, в ряде случаев она оказалась значительно больше скорости света. Есть разные объяснения этим сверхсветовым перемещениям. Какое из них окажется верным, покажут детальные исследования квазаров. Они входят в наши планы…

С помощью глобальных радиоинтерферометров уже сделано немало удивительных открытий касательно строения квазаров. Это даже представить себе трудно — исследуются детали квазаров, объектов, которые находятся на расстояниях в миллиарды световых лет, на краю видимой Вселенной! А обнаружение сверхсветовых движений в квазарах в какой-то момент даже вызвало сильное волнение в некоторых кругах, близких к астрономии. Как-никак речь шла о покушении на устои науки, что, конечно, всегда волнует — а вдруг?!

На этот раз, однако, покушение не состоялось и остался на своем месте краеугольный камень в фундаменте современной физики — скорость света в вакууме с = 300 000 км/с. Более того, превышение скорости света вообще не было неожиданностью для специалистов по теории относительности. Они, оказывается, еще «до того» твердо установили: возможна некая сверхсветовая «кажимость» и она никак не означает, что какие-то физические тела превысили скорость света. Было описано несколько возможных механизмов «кажимости», и некоторые из них вполне могут объяснить то, что наблюдается в квазарах.

Одно из объяснений удобно проиллюстрировать таким экспериментом, разумеется мысленным: пулемет дает длинную очередь по белой стене и пули прочерчивают на ней пунктирную линию. Скорость прочерчивания этой линии в принципе может быть любой, в том числе может превысить скорость света — нужно лишь, чтобы пулеметчик достаточно далеко отошел от стены и достаточно быстро поворачивал дуло пулемета. Можно представить себе нечто похожее и в квазаре, где по огромному внешнему газовому облаку («стена») бежит сверхсветовой «зайчик» («следы пуль»), нарисованный изнутри излучением раскаленного и быстро вращающегося ядра квазара («пулемет»). Вот другой возможный механизм «кажимости»: две детали квазара разлетаются в разные стороны с околосветовой скоростью, а земной наблюдатель вычислит, что они расходятся со скоростью около 2 с.

Возможные причины сверхсветовых «кажимостей» детально исследованы, описаны в литературе (см., например, книгу В. Л. Гинзбурга «Теоретическая физика и астрофизика». Наука, 1975), но, конечно, предстоит немалая работа, чтобы связать их с конкретными радиоастрономическими фактами, понять, что именно происходит в тех или иных квазарах. Осторожные люди, правда, говорят, что еще нужно проверять сами факты. Квазар — это бурлящий котел, и вполне возможно, так говорят осторожные люди, что радиоинтерферометр после перерыва регистрирует не перемещение старой детали, а рождение новой на большом расстоянии от старого места. Проще говоря, выводы о сверхсветовых скоростях сделаны на основе довольно редких радиоастрономических «фотографий», подтвердить эти выводы должно радиоастрономическое «кино».

Кстати, о фактах. В свое время, выполнив серию непрерывных наблюдений за сигналами «Викинга», американские астрофизики точно измерили тонкий релятивистский эффект: запаздывание радиоизлучений под действием массы Солнца. Подобные измерения проводились раньше, но на этот раз их точность значительно превысила прежние рекордные результаты и составила 1 %. Появилось еще одно подтверждение — теория относительности очень точно согласуется с физической реальностью. Та самая теория относительности, которая была придумана и продумана в деталях смелым гением в виде некоторой гипотезы относительности, «безумной идеи», опирающейся, однако, на неотвратимые факты. Та самая теория относительности, которая отвергает (во всяком случае, при нынешних наших представлениях о природе вещей) возможность движения каких-либо физических тел со скоростями, превышающими скорость света в вакууме.

Вселенная прибавляет в весе

В окрестностях многих галактик обнаружено нечто такое, что может сильно изменить наши взгляды не только на происхождение звездных миров, но и на будущее Вселенной.

Многие специалисты пока определяют свое отношение ко всему этому так: «Делать выводы преждевременно…», «Слишком рано…», «Рано…», «Рановато…». Другие же, напротив, считают, что открытие состоялось и давно уже пора занести его в реестр сенсаций века. Есть еще и третья точка зрения, но о ней потом. Сейчас о существе дела: похоже, что во Вселенной обнаружены огромные количества вещества, огромная «скрытая масса». Пока неизвестно, что она собой представляет, и точно не подсчитано, насколько она велика. По предварительным данным, «скрытая масса» во много раз превышает массу всех звезд, всех галактик, туманностей, вместе взятых, превышает массу всей известной нам до сих пор Вселенной.

В отличие от большинства других астрофизических сюрпризов, таких, например, как случайный прием радиоимпульсов первого пульсара, которые от неожиданности были приняты за сигналы высокоразвитых инопланетян, появление «скрытой массы» оказалось, так сказать, сенсацией замедленного действия. И историку науки предстоит немало повозиться, чтобы в деталях восстановить истину, целиком представить себе тот бикфордов шнур, по которому слабый огонек догадки добрался до наших дней, привел к нынешнему взрыву наблюдений, расчетов, оценок. Не пытаясь предрешить результаты скрупулезных исторических изысканий, приведем все же несколько строк, которым, вполне вероятно, найдется место в хронологической таблице на последних страницах будущего «Курса истории взвешивания Вселенной».

1786 г. Опираясь на свои наблюдения, Вильям Гершель доказал (предположений и раньше было много, но «доказал» — это, согласитесь, несколько иное дело), что туманные пятнышки на небосводе не что иное, как скопление звезд, галактики. В первый каталог В. Гершеля вошло 400 галактик, в последний его каталог — 2500.

Наблюдения и расчеты показывают, что в видимой нами Вселенной 1010 галактик, в каждой из них в среднем 1011 звезд. Есть основания полагать, что масса звезды в среднем равна массе Солнца, а значит, общая масса Вселенной равна 1021 масс Солнца, или 1048 т.

1895 г. Впервые применяется фотографирование для изучения формы галактик, доказано существование спиральных форм.

1917 г. Американский астроном Д. Слайфер обнаружил смещение линий в спектрах некоторых звезд, т. е. обнаружил, что приходящие от этих звезд излучения, характерные для тех или иных химических элементов, имеют длину волны совсем не такую, какая характерна для этих элементов на Земле. Смещение линий — следствие допплер-эффекта, оно вызывается движением звезд. Прошли годы, и смещение спектральных линий стало основным источником информации о движении звезд и галактик. По смещению линий измерили скорости разбегания галактик (красное смещение), уточнили движение отдельных их частей, зафиксировали вращение галактик-спутников вокруг больших галактик, движения галактик в сложных их скоплениях.

1939 г. Ленинградский астрофизик М. А. Леонтовский опубликовал свои работы по фотографированию галактики М31 (Туманность Андромеды). Он совмещал, складывал большое число одновременно сделанных фотографий, с тем чтобы выделить области малой яркости, невидимые на фоне светящегося неба. Автор скомпоновал в деревянных ящиках 200 самодельных картонных фотокамер с объективами из очковых стекол, «имеющих преимущество чрезвычайной дешевизны». Уже суммирование 10 снимков туманности «выявило те черты ее, которые на оригинальных фотографиях не видны», а 80 снимков более чем вдвое увеличили видимые размеры галактики. Столь интересно начатым работам М. А. Леонтовского не суждено было завершиться: в 1942 г. он погиб в осажденном Ленинграде.

1969 г. Результаты своих работ по фотографированию слабо светящихся областей галактик публикуют Г. де Вакулер, X. Арп, Ф. Бертолла и др. Электронная аппаратура и особые фотоэмульсии позволили фотографировать области галактик, яркость которых лишь на 1 % превышает фон неба. В последующие годы такие работы проводятся на многих обсерваториях, появляется много разных снимков. Выясняется, что практически все наблюдаемые галактики имеют огромные, невидимые на обычных снимках короны. Они хорошо видны на специальных снимках, где слабо светящиеся области для удобства представляют в виде чередующихся темных и светлых колец (в действительности все это светлые кольца с разным уровнем яркости, полученные при длительном экспонировании очень чувствительной пленки).

1974 г. Группа эстонских астрофизиков во главе с доктором физико-математических наук Я. Эйнасто опубликовала свою статью «Динамические свидетельства наличия «скрытой массы».

1975 г., январь. Астрономический совет АН СССР созывает в Таллине совещание по проблеме «Скрытые массы» во Вселенной».

Работы эстонских астрофизиков, особенно в сочетании с анализом фотографий галактических корон, как никогда ранее, приковали внимание исследователей к проблеме «скрытой массы». Резко усилилась аргументация того, что она существует и существует именно вокруг галактик. Получалось, что видимые эллипсы или спирали галактик — это лишь небольшие светящиеся части каких-то огромных невидимых массивов, что мы до сих пор видели лишь косточки огромных плодов, зреющих в бескрайних просторах космоса.

Настал момент собрать наблюдательные факты и попытаться представить себе, из чего же состоят короны галактик, в каком именно виде могла бы существовать в них «скрытая масса».

Если не входить в противоречие с наблюдательными данными о массе, светимости и цвете галактических корон, то можно сделать несколько предположений о их составе. Это мог бы быть ионизованный газ, нагретый до нескольких миллионов градусов и собранный, возможно, в отдельные облака. Или сравнительно легкие звезды, масса которых меньше 30 % от массы Солнца. Или карликовые скопления звезд, а может быть, даже карликовые галактики. Или, наконец, это могли бы быть так называемые умершие звезды — потухшие белые карлики, нейтронные звезды или даже «черные дыры». Данные о мягком рентгеновском излучении свидетельствуют, что в коронах спиральных галактик большого количества ионизованного газа, по-видимому, нет, а вот у эллиптических галактик массивные газовые короны вполне возможны. Что касается кандидатуры карликовых звезд, то здесь мог бы внести ясность поиск их в окрестностях нашего Солнца; чтобы карликовые звезды обеспечили расчетную «скрытую массу», их должно быть довольно много — примерно одна звезда на куб со стороной 15 св. лет. Эти звезды должны двигаться со скоростями более 100 км/с, и, по-видимому, они очень бедны тяжелыми элементами. Найти эти карликовые звезды будет не так-то просто. Во всяком случае, пока неясно, как их можно будет отличить от звезд слабой светимости, которые входят не в корону, а в само «тело» галактики.

«Скрытая масса», если существование ее будет доказано, должна заметно повлиять на наши представления об устройстве мира, об истории его развития и прогнозах на далекое будущее.

Видимая нами Вселенная, как установлено, расширяется, но этому расширению препятствуют силы взаимного притяжения ее «деталей», гравитационные силы. Противодействие тем сильнее, чем больше масса Вселенной, чем выше средняя плотность ее вещества. Если окажется, что плотность превышает 10-29— 10-30 г/см3—это значение называют критическим, — то гравитационные силы рано или поздно остановят расширение Вселенной, а затем заставят ее сжиматься. Известная нам масса Вселенной дает среднюю плотность около 3 % от критической, а значит, перспективу безостановочного расширения. По некоторым имеющимся в литературе оценкам «скрытой массы», она повышает среднюю плотность вещества во Вселенной до 20 %, а по иным оценкам, даже делает ее больше критической.

Наше представление о далеком прошлом Вселенной, о ее первых шагах мало зависит от того, будет обнаружена «скрытая масса» или не будет: основные модели мира вначале ведут себя одинаково при любой массе. Но зато она должна сильно влиять на более поздние события, и прежде всего на ход образования галактик. И конечно же, от того, есть «скрытая масса» или нет, а если есть, то сколько ее, сильно зависит все то, что сейчас происходит во Вселенной.

Вот, оказывается, с какими проблемами связан поиск «скрытой массы». Возраст и происхождение галактик… Стабильность звездных систем… Будущее Вселенной, беспредельное ее расширение или сжатие, которое придет на смену наблюдаемому в наши дни разбеганию галактик… Насколько же окончательными можно считать нынешние данные о «скрытой массе»? Насколько они достоверны? И можно ли повысить точность взвешивания Вселенной? С этими вопросами мы обратились к доктору физико-математических наук Я.Э. Эйнасто.

— Сначала скажу о работах, уже выполненных. Еще несколько лет назад, анализируя сдвиг спектральных линий в оптическом и радиодиапазоне, наша группа исследовала скорости движения ветвей некоторых спиральных галактик. Анализ этих скоростей показал: в движении должны участвовать массы, во много раз большие тех, которые могут быть у видимой части галактик. Следующим объектом изучения стали очень распространенные во Вселенной пары галактик, вращающиеся относительно некоторого центра. В первый период этой работы мы проанализировали около 110 таких пар с самыми разными расстояниями между компонентами пары. Анализ скоростей вращения показал, что в таком вращении участвуют огромные невидимые массы, сосредоточенные в очень больших объемах. Слово «невидимые» здесь используется уже с учетом последних достижений фотографической техники: по нашим расчетам, «скрытая масса» должна быть значительно больше, чем могли бы содержать галактические слабо светящиеся короны, и занимает она значительно большие объемы. По предварительным оценкам, «скрытая масса» в двойных галактиках в 10 раз больше видимой.

Можно наметить немало конкретных работ, которые позволили бы уточнить полную массу Вселенной. В их числе и тщательное изучение наблюдательных данных, уже имеющихся в мировой литературе, и ряд новых специальных наблюдений с помощью совершенных чувствительных спектрографов. В нашей стране такие наблюдения можно было бы проводить на нескольких обсерваториях, в частности в Алма-Ате, в Бюракане, в Крыму. Мы тоже планируем наблюдательные эксперименты, надеясь главным образом на длинные зимние ночи, когда обычно хмурое эстонское небо становится прозрачным. Новые исследования, и прежде всего изучение движения галактик в больших скоплениях, могут дать очень интересные результаты. Так, например, есть основания думать, что в таких скоплениях количество «скрытой массы» в сравнении с видимой значительно больше, чем в двойных галактиках. Сложных галактических скоплений очень много, и поэтому вполне может быть, что плотность Вселенной весьма близка к критической или даже больше ее. Судя по всему, уже сейчас нет оснований сомневаться в существовании во Вселенной большой «скрытой массы», хочется верить, что вскоре удастся более или менее точно и, конечно, более уверенно ответить на вопрос «сколько?»

Похоже, что наступило время, когда астрофизики перестают говорить о «скрытой массе» в сослагательном наклонении, с применением частицы «бы». Не сразу, а точнее, не все сразу, но перестают. В этой связи уместно, как это, кстати, и было обещано, вспомнить еще об одной, третьей точке зрения на последние работы по взвешиванию Вселенной. В достаточно вольном пересказе эта точка зрения выглядит так: «Обнаружение «скрытой массы»? Но, помилуйте, здесь нет никакой сенсации!.. Если не изобретать по всякому поводу новую физику и не придумывать патологических моделей, то давно уже нужно было признать, что масса Вселенной значительно больше, чем это кажется с первого взгляда. Тот факт, что долгое время эту массу не находили, приводит лишь к одному выводу: нужно лучше искать. А если «скрытая масса» действительно обнаруживается, то это вполне закономерно. Это еще одно дополнение к огромному списку известных уже примеров того, как хорошие наблюдения рано или поздно подтверждают правильную теорию».

Когда эта книга готовилась к печати, пришло интереснейшее сообщение: группа советских физиков получила экспериментальные данные, позволяющие считать, что масса покоя элементарной частицы нейтрино не равна нулю, как это считалось раньше. Нейтрино во Вселенной очень много — их, в частности, должно быть в десятки раз больше, чем электронов. И вполне может оказаться, что именно нейтрино создают огромную скрытую массу Вселенной.

Пятьсот тысяч бит с Венеры

Советский космический аппарат „Венера-9“ открыл новую страницу в исследовании планет Солнечной системы, осуществив телевизионную передачу прямо с поверхности Венеры.

Когда мы называем эти эксперименты фантастическими, непостижимыми, то здесь скорее простая констатация факта, чем литературная гипербола. Вспомните: большая сравнительно машина, размером с автомобиль, быстро удаляясь от Земли, четыре месяца летит в безжизненном океане космоса, точно попадает в плывущую по своей орбите Венеру. И оттуда по линии связи длиной в 70 млн. км гонит на Землю радиограммы и зашифрованные в электрических сигналах картины, которые на самой планете рассматривает бесстрастное электронное око…

Представить себе все это трудно, не хватает воображения. Природа тысячелетиями строгала и шлифовала лучшее свое творение— человека, приспосабливая его к решению совсем иных задач. Песчинка на ладони, камень размером с кулак, на горизонте лес, два дня перехода до ближайшей реки — вот те масштабы, которые мы получили в наследство от своих предков, которыми привыкли мыслить. А тут на наш мозг обрушивается одно за другим: «…миллиард световых лет… записано в структуре белка… наносекунда… мягкая посадка на Венеру… линия связи длиной 70 млн. км… квантовый переход…» — не успеваешь отдать дань восхищения одному открытию или свершению, как нужно привыкать к новым словосочетаниям, и просто не хватает времени осмыслить их, задуматься, поинтересоваться подробностями. А ведь бывает, что несколько подробностей лучше всего другого помогают нам прорисовать новый сложный фрагмент в картине мира.

Автоматическая станция «Венера-9», большая сравнительно машина (масса 4936 кг), быстро удаляется от Земли (начальная скорость удаления 11 км/ с; двигаясь с такой скоростью, из Москвы в Ленинград можно добраться за 1 мин и за 3 мин в Ташкент). До этого был космодром, огромная ракета, бесконечные проверки и испытания, торжественность и напряженность старта, несколько минут активного полета, завершившегося выводом станции на близкую околоземную орбиту. И уже с этой орбиты после еще одного комплекса проверок, тщательного прицеливания и точного выбора момента — окончательный разгон последней ступени, решающий выстрел. Но не в Венеру, а совсем в другую сторону.

Почему?

Существует много разных маршрутов, по которым космический аппарат может попасть с Земли на Венеру (рис. 1–3 на цветной вклейке, примыкающей к с. 113). Естественней всего, казалось бы, просто упасть на планету (рис. 1). Для этого нужно нейтрализовать скорость Vз, которую аппарат имеет, двигаясь вместе с Землей (орбитальная скорость Земли — 29,76 км/с), и одновременно сообщить ему скорость Vс в направлении на Солнце. Тогда аппарат, преодолев земное притяжение и падая на Солнце, встретится с Венерой в месте, где ее орбита пересекается с прямолинейной (а потому кратчайшей) траекторией аппарата. В этом варианте время перелета может составлять всего 25 сут, протяженность маршрута — 42 млн. км. Однако же у такого кратчайшего маршрута есть свои недостатки, и по крайней мере с одним из них трудно не считаться — аппарату необходимо сообщить начальную скорость 31,8 км/с, а такие скорости ракетной технике пока недоступны.

Из всех слов, какими пользуются специалисты при обсуждении вариантов космического эксперимента, самое весомое — масса. За массу полезного груза приходится платить массой стартовой ракеты, при этом цена за килограмм зависит и от выбора космической трассы: если выбрать трассу, на которую ракета выходит с большим расходом топлива, то на долю аппарата достанется малая доля общей массы, его придется делать небольшим и легким. А если выбрать экономичную трассу и топлива понадобится немного, то сэкономленную массу можно будет передать в фонд аппарата.

При запуске на Венеру массу, выведенную на околоземную орбиту, приходится делить между самим межпланетным аппаратом и последней ступенью ракеты, которая с околоземной орбиты окончательно разгоняет аппарат. Самый выгодный вариант такого последнего выстрела, т. е. вариант с минимальным расходом топлива, а значит, с максимальной полезной массой, выглядит так: разгоняя аппарат, его направляют с таким расчетом, чтобы он не спеша летел по сложной кривой, приближаясь к орбите Венеры (рис. 2), а планета тем временем сама подходит к месту встречи. Основные данные полета: длина пути — 600 млн. км, время полета — 6 месяцев. На практике таким экономичным вариантом никогда не пользовались — полет тянется очень долго. А из-за этого затрудняется точное попадание в цель, возрастает вероятность всяких дорожных неприятностей, скажем, встречи с микрометеоритами или повреждения электронных приборов случайными вспышками космического излучения. Кроме того, в момент посадки аппарата на Венеру она будет на расстоянии 90 млн. км от Земли, а с ростом расстояния все труднее создавать надежную линию радиосвязи.

Скрупулезное взвешивание всех «за» и «против» приводит к некоторым компромиссным вариантам полета (рис. 3), которые, правда, ближе к последнему, самому выгодному, чем к первому, самому короткому. Основные данные промежуточных маршрутов: время полета — около 4 месяцев, протяженность примерно 360 млн. км, расстояние Земля — Венера в момент посадки около 70 млн. км. По таким маршрутам летали к Венере все советские межпланетные станции, в том числе и «Венера-9», и «Венера-10», впервые передавшие на Землю изображение поверхности планеты.

Долгие месяцы перелета для автоматической станции — это вовсе не зимняя спячка. Станция живет, работают многие ее системы. В частности, по сигналам датчиков температуры включаются и выключаются бортовые вентиляторы обдува, открываются и закрываются заслонки воздуховодов системы терморегулирования, поддерживая температуру около 20 °C. Один из непрерывно включенных дежурных приемников готов в любую минуту принять сигналы с Земли, расшифровать их, передать на командный пункт станции, в блок управления. В блок памяти записываются показания многочисленных научных приборов, данные от системы астронавигации, сведения о том, что происходит на самой станции. Во время очередного сеанса связи вся эта информация может быть передана на Землю. В нужный момент по собственной программе или по командам с Земли начинает действовать в одном из своих режимов система ориентации. Всматриваясь приборами астронавигации в свет небесных маяков, станция определяет свое место в звездном мире, положение в пространстве. С ювелирной точностью производится коррекция орбиты — станция крепко держит невидимую тропу, ведущую к Венере.

Еще вчера такие слова, как «астронавигация», «ориентация в космосе», «коррекция орбиты», загадочно произносили лишь самые образованные герои фантастических романов. Сегодня они в словарях, рассчитанных на школьника: нужно обязательно иметь представление обо всем этом, чтобы почувствовать, какая гигантская работа стоит за этим привычным теперь термином «космический полет».

Вот некоторые типичные режимы межпланетной станции на трассе перелета. Основной режим ПСО — постоянной солнечной ориентации (рис. 8), режим, при котором солнечные батареи направлены на Солнце, станция кормится его бесплатной энергией и пополняет свои энергетические запасы, подзаряжает аккумуляторы.

За соблюдением режима ПСО следит датчик Солнца, его можно представить себе как систему фотоэлементов с объективом (рис. 4, 5 цветной вклейки), этакий многоглазый фотоэкспонометр. При правильной ориентации солнечных батарей этот датчик направлен точно на Солнце, все его фотоэлементы одинаково хорошо видят солнечный диск и дают одинаковый ток. Но стоит только станции чуть отвернуться от Солнца, как равенство токов нарушается. И тут же в электронном блоке управления, куда сходятся токи от всех фотоэлементов, будет выработан сигнал поправки. А он включит нужные холодные реактивные микродвигатели (их основа — небольшой баллон со сжатым газом), и они вернут станцию на место.

По мере того как станция уходит от Земли, режим ПСО (ориентация только в одной плоскости, по одной оси) перестает устраивать радистов, им уже нужно, чтобы передатчики станции могли поддерживать связь с Землей через остронаправленную антенну. Эта антенна не разбазаривает радиоволны по всему свету, она излучает их узким пучком, напоминающим луч прожектора. А за этим стоит эффективное использование мощности бортового передатчика на больших расстояниях от Земли и, значит, возможность уменьшить массу самого передатчика, системы его питания.

Чтобы радиолуч остронаправленной антенны попал точно в Землю, станция по команде с Земли переходит из режима ПСО в режим ПСЗО — постоянной солнечно-звездной ориентации. Солнечные батареи по-прежнему нацелены на Солнце, но в плоскости этих батарей станция занимает уже не произвольное, а строго определенное положение. Его поддерживает второй оптический датчик — датчик звезды, который «держит» свою, разумеется, заранее назначенную ему звездочку, подобно тому как солнечный датчик «держит» диск Солнца. У режима ПСЗО есть одна тонкость — станция и Земля непрерывно движутся относительно Солнца, и при этом меняются углы между направлениями на Землю, на Солнце и на звезду. Приходится по ходу полета подправлять «точку зрения» датчиков с таким расчетом, чтобы остронаправленная антенна во всех случаях смотрела точно на Землю.

Но вот наступает момент, когда прерывается режим ПСЗО и производится одна из самых ответственных и сложных операций— коррекция орбиты. Уже точно измерены координаты станции и ее скорость, точно вычислено, в какую сторону и на сколько нужно подтолкнуть станцию, чтобы она не сходила с тропы. За дело берется сложный комплекс автоматики, в котором невидимые нити радиолучей связывают в одно целое бортовую аппаратуру и наземную. Станцию разворачивают в расчетное положение, на расчетное время включают мощный реактивный двигатель и, контролируя приращение скорости, точно отмеряют расчетную дозу ускорения. А когда коррекция закончена, особая система, которая запомнила, в каком положении станция находилась до разворота, возвращает ее в режим ПСЗО.

К этим крайне упрощенным описаниям стоит, наверное, добавить, что в системах ориентации, навигации и коррекции четко взаимодействуют многие приборы, элементы, блоки, что простая на первый взгляд операция, скажем, переход с малонаправленной антенны на остронаправленную, возвращение станции в режим ПСЗО или сеанс связи с Землей, — это длинная цепочка «включилась», «выключилась», «принято», «сработало», «проверено», каждое из которых должно выполняться четко, своевременно, надежно. И еще: за время полета станций «Венера-9» и «Венера—10» с ними было проведено более ста сеансов связи, на каждой станции прошли две коррекции и в заданный срок станции прибыли в заданный район — в район Венеры. О последних этапах полета межпланетных станций к Венере и их посадке на планету рассказывает доктор технических наук В. Е. Ишевский:

— Если можно, Валентин Евграфович, расскажите, пожалуйста, о том, из чего складывалось это волнующее событие — прибытие станции на Венеру…

— Здесь, пожалуй, целая цепочка волнующих событий, растянутых во времени на несколько дней. Началом, наверное, можно считать припланетную коррекцию со всеми ее сложными и ответственными слагаемыми: точным определением необходимого импульса, разворотом станции, ее стабилизацией, включением двигателя, проверкой изменения вектора скорости, возвращением станции в режим ПСЗО. Затем следует разделение станции на две самостоятельные части: спускаемый аппарат СА и орбитальный аппарат ОА (рис. 6 цветной вклейки). Происходит отстрел СА, он отходит от ОА, и какое-то время оба аппарата летят рядом по так называемой попадающей траектории. Она ведет к поверхности планеты.

Спускаемый аппарат СА так и остается на этой траектории, а на орбитальном аппарате ОА в определенный момент основной двигатель осуществляет маневр увода — ОА уходит на пролетную траекторию, т. е. такую, которая идет мимо планеты. Затем на расстоянии 1500 км от планеты еще одно включение двигателя, разумеется, после разворота и точной ориентации в пространстве, и ОА, оправдывая свое название, переходит на вытянутую эллиптическую орбиту ИСВ — искусственного спутника Венеры.

А тем временем спускаемый аппарат, продолжая падать на планету, входит в верхние слои атмосферы, начинается сложный цикл спуска и посадки. В атмосферу планеты СА входит со скоростью около 11 км/ с, в привычных, житейских единицах это почти 40 000 км/ч. Из-за такой высокой скорости и еще из-за высокой плотности атмосферы на спускаемый аппарат сразу же обрушиваются огромные механические и тепловые нагрузки…

— Какие цифры стоят за этим словом «огромные»?

— Плазма, окружающая аппарат во время его движения в верхних слоях атмосферы, имеет температуру 10 000 °C… Механическая нагрузка на лобовую часть СА превышает «земной» вес десятка железнодорожных вагонов. Еще одна цифра: за счет естественного торможения в атмосфере скорость СА довольно быстро снижается почти в 50 раз… И когда она достигает примерно 900 км/ч, бортовая автоматика начинает второй этап торможения — с помощью парашютных систем.

— Все эти огромные нагрузки, очевидно, ставят немало сложных задач перед конструкторами.

— Конечно… Но это далеко не все сложные задачи. Первые перегрузки кратковременны, они длятся секунды. А нужно еще, чтобы аппарат довольно долго и надежно работал на поверхности Венеры, где атмосферное давление около 90 атм (9 МПа), почти как на километровой глубине в океане. Такое давление продавит крышу легкового автомобиля, если даже сделать ее из листа стали толщиной в несколько сантиметров. А температура на поверхности планеты около 500 °C, при такой температуре алюминий становится мягким, как воск, и, конечно же, плавятся свинец и олово.

Для сложной бортовой аппаратуры это нетерпимая жара. (Загляните в радиотехнический справочник — даже кремниевые полупроводниковые приборы, которые слывут чемпионами по термостойкости, больше 150 °C терпеть не могут, да и то в области высоких температур их параметры сильно ухудшаются.) Вот почему на СА задолго до посадки начинается борьба за то, чтобы замедлить нагревание бортовой аппаратуры, отодвинуть, если можно так сказать, ее тепловую смерть.

Еще во время полета в космосе СА сильно охлаждают, создают минусовую температуру в приборном отсеке. На самой поверхности планеты внутри СА начинают действовать вентиляторы, которые вместе со специальными теплопоглотителями делают все возможное, чтобы ответственные узлы аппаратуры нагревались в самую последнюю очередь. Внешняя и внутренняя теплоизоляция, конечно, тоже играет не последнюю роль. И все это только одна сторона дела, одна группа задач. Нужно еще аккуратно затормозить спускаемый аппарат, мягко посадить его, обеспечить устойчивость даже в том случае, если СА сядет на склон горы… Список этот можно продолжить, но, думаю, важнее сказать другое: все конструкторские задачи — только часть большого комплекса проблем, решенных специалистами по двигателям, астронавигации, ориентации, корректированию орбит, динамике полета, радиосвязи, баллистике, бортовой автоматике, по научным исследованиям, ради которых и осуществляется эксперимент.

При каждом успехе космических автоматов мы вспоминаем главного конструктора, члена-корреспондента Академии наук Георгия Николаевича Бабакина, Героя Социалистического Труда, лауреата Ленинской премии. Он возглавлял конструкторское бюро, где были созданы многие космические автоматы, в том числе и те, что исследовали Венеру. Он возглавлял это конструкторское бюро и заложил основы, сформировал стиль, техническую политику, идеологию — словом все, что в итоге дало прекрасные результаты в исследовании космоса с помощью автоматов.

В исследованиях Венеры пройден большой путь, начало которому было положено еще Сергеем Павловичем Королевым, — первое попадание в планету («Венера-3», 1966), первый парашютный спуск и непосредственные измерения в атмосфере («Венера-4», 1967), спуск и измерения до высоты 20 км от поверхности («Венера-5», «Венера-6», 1969), первая передача научной информации с поверхности планеты («Венера-7», 1970), передача с дневной, т. е. обращенной к Солнцу, стороны планеты («Венера-8», 1972). И наконец, созданные с учетом всего предыдущего опыта станции «Венера-9» и «Венера-10», которые многим отличаются от своих предшественниц, в частности технологией спуска в атмосфере планеты…

— Рассказывая о прибытии «Венеры-9» на Венеру, вы подошли к тому моменту, когда должны вступить в строй парашютные системы…

— Парашютов на станции несколько. Первым появляется небольшой вспомогательный парашют — после отстрела верхней крышки теплозащитной оболочки (ТО) он уводит ее от аппарата (рис. 7 цветной вклейки). Позже будет произведен отстрел нижней крышки этой оболочки..

— Многие читатели, наверное, захотят узнать, что такое «отстрел»…

— Это тот счастливый случай, когда термин не требует перевода и точно отражает суть дела. Для того чтобы отделить и оттолкнуть одну часть аппарата от другой, как правило, используется пиротехнический заряд — сокращенно пирозаряд, это может быть небольшой цилиндр с некоторым подобием порохового заряда, с поршнем и толкателем. По соответствующей команде электрический импульс зажигает заряд, создается очень высокое давление, сила давления выталкивает поршень, и он производит необходимую работу. Например, отделяет СА от ОА, отбрасывает крышку теплозащиты. Кстати, на высоте около 50 км отстреливается основной парашют и скорость спуска СА начинает нарастать…

— А для чего это делается?

— Из парашютов самого СА первым раскрывается тормозной, он снижает скорость спуска до 50 м/с, т е до 180 км/ч. Начинает работать бортовой передатчик, и с трассы спуска идет научная информация на орбитальный аппарат (ОА). А с него — прямо на Землю. Через какое-то время раскрывается основной трехкупольный парашют общей площадью 180 м2 СА совсем уже медленно проходит один из самых интересных участков полета — слой облаков После этого медленный спуск не представляет особого интереса для ученых, а лишнее время лететь в жаркой атмосфере — это значит поднять температуру ОА и тем самым сократить возможное время его работы на поверхности планеты. Вот почему основной парашют отстреливает и СА начинает опускаться значительно быстрее, притормаживаясь только за счет особого жесткого зонтика, как принято говорить, за счет аэродинамического торможения Весь режим спуска СА имеет еще одну важную особенность — он должен быть синхронизирован с полетом ОА. Во время посадки СА орбитальный ретранслятор, установленный на ОА, должен находиться на таком участке своей орбиты, с которого можно перебросить надежный радиомост от СА на Землю. Как известно, именно таким четким взаимодействием СА и ОА завершились полеты «Венеры-9» и «Венеры-10», и они передали на Землю огромное количество информации.

Хотя информация и правит миром, однако она не вошла еще в школьные учебники, и единица количества информации — бит — пока не заняла своего законного места рядом с ваттами, метрами, амперами. Не кто иной, как связисты, первыми научились измерять информацию, да и само это слово в нынешнем его звучании пришло из теории связи. Трудный вопрос о полезности, о ценности сообщений остался в стороне, бесстрастной мерой информации стало количество простейших электрических сигналов-импульсов, необходимое для передачи слов, текстов, картинок независимо от их содержания Самая мелкая мера — один бит, один импульс или пауза, одно «да» или «нет» Если в алфавите 32 буквы, то для передачи каждой из них нужна определенная комбинация из 5 импульсов или пауз, из 5 «да» или «нет». И значит, количество информации в одной букве — 5 бит. В слове «сон» 3 буквы, т. е 15 бит, в слове «теплопроводность» 16 букв, оно содержит информацию 80 бит В шахматной доске 64 бит — 64 черных («да») или белых («нет») клеточки. В странице машинописного текста приблизительно 10 тыс. бит, в газетной фотографии — тысяч двести — триста, в пятиминутном разговоре — нисколько миллионов бит.

Избалованные легкостью получения информации, килобитами и мегабитами, которые приходят к нам с телевизионного экрана, из радиоприемника или по телефонному проводу, мы редко интересуемся ценой, которую платят за все это связисты А платят они немало, причем двумя видами валюты — секундами и герцами, временем передачи и полосой частот, которую нужно пропустить по каналу связи. (Полоса частот телевизионного сигнала — 6 МГц, полоса частот телефонного разговора примерно 3 кГц. Представление о полосе частот становится понятней, если вспомнить клавиатуру рояля: играя в пределах одной средней октавы, мы излучаем полосу частот примерно 400 Гц, играя на всей клавиатуре — около 4000 Гц.) Причем валюта — герцы и секунды — принимается в любой пропорции, важна лишь общая сумма: чем меньше времени отводится на передачу информации, тем шире должен быть пропускаемый спектр, и наоборот, чем более узкая полоса передается, тем дольше идет передача. Телеграмму в 1000 бит можно передать за 1 с, при этом линия связи должна будет пропустить полосу частот в 4000 Гц. А можно ограничиться полосой в 2–3 Гц, но тогда передавать телеграмму придется очень медленно — что-то около получаса. После такого предисловия мы можем вернуться на поверхность Венеры, куда только что спустился СА, и теперь уже со знанием дела отметить: время жизни спускаемого аппарата на поверхности ограничено; поэтому, чтобы передать с него большой объем информации, нужно передавать ее очень быстро, а значит, нужно, чтобы линия связи Венера — Земля пропускала широкую полосу частот.

Нужно-то оно, конечно, нужно, но только можно ли…

Главное препятствие для расширения полосы частот — огромная протяженность линий космической радиосвязи, эти бесконечные миллионы километров. Мощность, которая приходит от передатчика к приемнику, убывает с квадратом расстояния между ними. Именно с квадратом — расстояние увеличивается в 2 раза, мощность сигнала, доставшегося приемнику, уменьшается в 4 раза, расстояние растет в 1000 раз, мощность падает в миллион раз. От одного и того же передатчика с Венеры придет сигнал в 40 000 раз более слабый, чем с Луны, потому что от Земли до Венеры в 200 раз дальше, чем до Луны.

Мощность передатчика на космическом аппарате ограничена (все та же масса!), и практически мощность сигнала, принимаемого на Земле из района Венеры, измеряется триллиардными долями миллиардной доли ватта. Принять такой сигнал примерно то же самое, что, находясь в Москве, услышать писк комара, совершающего вечернюю прогулку где-нибудь в районе Мурманска. Казалось бы, ничего страшного в этом нет, электроника давно умеет усиливать слабые сигналы, даже в рядовом транзисторном приемнике на пути от антенны до громкоговорителя сигнал усиливается в миллионы раз. Кто же помешает усилить любой, самый слабый сигнал, который приходит с межпланетной станции на Землю?

Помешают помехи, шумы, как их называют радисты. Это «радиосигналы», рожденные хаотическим движением электронов в самой антенне приемника, радиоизлучением Солнца, Галактики, далеких звезд. Уровень всех этих шумов невелик, мы не сталкиваемся с ними, слушая земные радиостанции или телецентры. Но чрезвычайно слабый сигнал с далекой космической станции может просто утонуть в шумах, потеряться в них, как шепот на шумной улице. Усиление в этом случае не имеет никакого смысла — вместе с сигналом усиливаются шумы.

Проблема выделения слабых сигналов из шума — одна из центральных в современной радиотехнике. В числе методов, облегчающих ее решение, самый радикальный — хирургия, сужение частотного спектра сигнала. Чем уже частотные ворота канала связи, тем меньше мощность попавших в него шумов и из них легче выделить полезный сигнал.

Итак, конфликт: с одной стороны, чтобы выделить слабый сигнал из шумов, он должен быть узкополосным, с другой стороны, с помощью узкополосного сигнала много информации не передать. И разрешение конфликта, неожиданное и смелое, — орбитальный ретранслятор. Теперь от установленного на СА сравнительно маломощного передатчика на приемник орбитального аппарата придет довольно сильный сигнал — идти недалеко, какие-то тысячи километров. Не миллионы. И можно не бояться шумов, вести передачу в сравнительно широкой полосе частот. А на ОА стоит уже значительно более мощный передатчик, снабженный к тому же остронаправленной антенной (СА неподвижен, а ОА можно крутить как угодно, направляя антенну на Землю).

Поэтому от ОА на Землю опять-таки приходит сигнал значительно более сильный, чем приходил бы от самого СА. Все это, вместе взятое, дает самый важный эффект — резко, во много сотен раз может быть расширена полоса частот, пропускаемых каналом связи. (Предлагается такое сравнение: прямая передача с Венеры — это возможность услышать две-три соседние клавиши рояля, а ретрансляция — многозвучные аккорды, охватывающие несколько октав.) Ну а если расширяется частотный спектр сигнала, то, значит, возрастает объем информации, которую можно передать с Венеры. Возрастает объем того самого бесценного продукта, из-за которого и затевалась вся эта сложная экспедиция на Венеру.

Весь объем информации, которую можно было передать с поверхности планеты, разделили между несколькими потребителями — коммутатор поочередно подключал к передатчику СА разные научные приборы. Но основная часть этого объема, основное время работы канала связи было ассигновано главному научному результату — простому человеческому «увидел»! Об этом завершающем аккорде всего эксперимента рассказывает доктор технических наук А. С. Селиванов:

— Очень хотелось бы, Арнольд Сергеевич, представить себе аппаратуру, которой была доверена съемка Венеры…

— Прежде всего, наверное, нужно сказать, что съемки в общепринятом смысле этого слова не было. Иногда космические автоматы действительно прежде всего фотографируют объект, а затем уже по линии радиосвязи передают изображение на Землю. В данном случае такой необходимости не было. Изображение воспринималось фотоэлектронным прибором, установленным на СА, тут же преобразовывалось в серии электрических сигналов, которые через ОА сразу же передавались на Землю (рис. 9). Ну а там уже из этих сигналов воссоздавалась картинка…

— То есть обычная телевизионная передача…

— Скорее фототелеграфная. Во-первых, картинка передавалась медленно, на один кадр ушло почти полчаса. Во-вторых, в системе не было обязательного телевизионного атрибута — передающей электронно-лучевой трубки. Ее роль взяла на себя камера с механической разверткой.

Как известно, в передающей телевизионной трубке изображение проецируется на светочувствительный экран так, как, скажем, оно проецируется на пленку или на пластинку в фотоаппарате. Светочувствительный экран — это огромное множество мельчайших фотоэлементов, и на каждом из них под действием световой картинки появляется свой электрический заряд. Этап заряд тем больше, чем выше освещенность данной точки. Острый электронный луч трубки поочередно обегает все фотоэлементы, «считывает» заряд, и картинка оказывается зашифрованной в меняющемся токе луча. Это называется разверткой изображения, превращением его в телевизионный сигнал.

В камере с механической разверткой тоже создается электрическое описание картинки, но уже иным способом. В такой камере всего один фотоэлемент, точнее, фотоэлектронный умножитель — ФЭУ. Луч к нему приходит через объектив и очень малое отверстие в диафрагме. В итоге ФЭУ видит только одну точку картинки. Но с помощью подвижного зеркала (его быстро покачивает кулачок, вращаемый двигателем), установленного на поворотной платформе, камера постепенно, точку за точкой, осматривает весь объект.

— А что заставило отказаться от электронного телевидения в пользу механического?..

— Мне бы не хотелось так ставить вопрос… Система все-таки в основном электронная: сам ФЭУ, его питание, усилители и преобразователи сигнала, синхронизация вращения двигателя высокостабильной опорной частотой — все это чистая электроника. Что же касается механической развертки, то в ее пользу есть немало аргументов.

— Какие же?..

— Система с механической разверткой — такие системы теперь часто называют сканерами — это прежде всего очень точный измерительный прибор с равномерной чувствительностью и четкостью по всему кадру. Весь кадр осматривается одним и только одним светочувствительным элементом — ФЭУ, диафрагма вырезает луч, который всегда проходит через центр объектива. В такой системе огромная панорама получается одним росчерком пера, ее не нужно склеивать из кусочков. А автоматическая регулировка усиления позволяет скомпенсировать неодинаковую освещенность объекта. К тому же при медленной передаче картинки электронная развертка просто не имеет смысла — теряется главное ее достоинство — ее безынерционность.

В свое время приходилось доказывать, что сканеры незаменимы для многих систем космического телевидения. Сейчас как будто уже никто не спорит… Сканеры к тому же делом доказали свои достоинства. Вспомним нашу станцию «Луна-9», которая первой совершила мягкую посадку на Луну, передала на Землю первые лунные панорамы. Они были сделаны с помощью сканеров, таких же примерно, какие затем работали на других «Лунах», на «Луноходах», «Марсах» и «Венерах». Кстати, наши американские коллеги, которые всегда отдавали предпочтение чисто электронным аппаратам, на своих последних машинах, на марсианских «Викингах», тоже установили сканеры с механической разверткой. И видимо, не жалеют об этом — «Викинги» передали на Землю много прекрасных марсианских панорам.

— В свое время с советской станции «Марс-5» был получен цветной снимок Марса. Какой аппаратурой он сделан?

— Вот здесь действительно планета сначала фотографировалась, пленка на борту проявлялась и затем картинка считывалась сканером. Были отсняты десятки кадров, некоторые снимались через разноцветные светофильтры, и из них был синтезирован цветной снимок. На «Марсах» стояли и другие телевизионные системы. В частности, сканер без горизонтальной развертки, ее заменило само движение станции над планетой. Такая система, кстати, была установлена на «Венерах», она дает изображение облачного слоя планеты. Телевизионный сигнал может сразу же передаваться на Землю, а может записываться на магнитофон и передаваться в другое, более удобное время, или передаваться повторно. На магнитофон можно записать также и сигналы, полученные со спускаемого аппарата.

— Какой объем информации был передан на Землю для воспроизведения каждого венерианского ландшафта?..

— Примерно 500 тысяч бит…

— Довольно много… Это эквивалентно телеграмме в 5— 10 тысяч слов…

— Большой объем информации, который нужно передать, — это плата за четкость. Сканер прошел по «картинке» более 500 строк, в каждой строке было 128 элементов, вся картинка сложилась примерно из 70 000 точек. И не просто черных и белых, как на чертеже, а имеющих разные градации яркости, как в телевидении или фотографии. Была предусмотрена передача 64 яркостных градаций, и таким образом на передачу каждой точки уходило 6 бит плюс еще один, так называемый служебный бит для синхронизации. Как видите, за передачу картинки приходится щедро платить — 500 тысяч бит — цена немалая. Но и полезной информации в картинках очень много. С полученными ландшафтами Венеры работают специалисты по геологии планет, по их происхождению. И те, кто готовит следующие полеты… Таким образом, полученную с Венеры информацию можно смело считать важным научным результатом.

К важным научным результатам, которые принесли на Землю эти тысячи бит телевизионных сигналов, нужно добавить еще один, ему вообще нет цены — мы видели Венеру.

Алло, Аэлита!

Успехи современной радиоэлектроники делают реальным прием сигналов с огромных расстояний. Поиск внеземных цивилизаций из чисто умозрительной проблемы становится научной и дате технической задачей. Ученые пытаются строго оценить вероятность зарождения жизни и появления цивилизации в далеких звездных мирах, глубоко задумываясь при этом о путях развития жизни на Земле.

Небольшого формата тоненькая брошюрка — программа научного симпозиума. На титульном листе, как всегда, названы его организаторы, сроки, место работы и в середине сравнительно крупным шрифтом наименование темы. И вот здесь вместо привычных словосочетаний, спокойных и важных, таких, скажем, как «Совещание по электронным явлениям на поверхности полупроводника» или, скажем, «Конференция по применению математических методов обработки результатов спортивных соревнований», на вас неожиданно обрушивается:

Академия наук СССР

Национальная Академия США

Академия наук Армянской ССР

Симпозиум Связь с внеземными цивилизациями

Именно так — без всяких оговорок, без каких-либо смягчающих «к вопросу о…», четко и определенно. Тема, еще вчера считавшаяся монополией фантастических романов, стала поводом для серьезного международного собрания ученых. Причем ученых, как сейчас принято говорить, экстракласса — физиков, математиков, астрономов, биологов, историков, социологов, химиков с мировыми именами Ученых, представляющих науку в самом высоком и чистом смысле этого слова.

Что же изменилось? Что произошло? Может быть, появились какие-либо новые факты? Зарегистрированы обнадеживающие сигналы? В космосе обнаружены признаки жизнедеятельности?

Нет, ничего этого не было. Фактором совсем иного рода объясняется всплеск оптимизма, наблюдаемый в последнее время в отношении к проблеме контактов с внеземными цивилизациями, или, как ее часто называют, к проблеме CETI (предложенное несколько лет назад чехословацким ученым Р. Пишеком название проблемы на английском языке «Communication with Extra Terrestrial lntelligens» и его сокращение «СЕТI» — русское звучание «сэти» — пользуется популярностью, в частности, потому, что «СЕТI» — это родительный падеж от латинского «CETUS» — «КИТ», а сравнительно близкую к нам звезду — τ-Кита специалисты считают одним из возможных центров внеземной цивилизации). Всплеск оптимизма, переход от фантазирования и благих пожеланий к реальной постановке проблемы объясняется успехами на широком фронте науки, успехами, которые привели к глубокому пониманию основных аспектов проблемы CETI.

Для большинства людей, по-видимому, вопрос о самой связи с другими разумными мирами, вопрос о контактах с ними уходит на второй план, потому что для большинства людей открытым остается главный вопрос: а есть ли вообще эти «другие миры», есть ли с кем устанавливать связь? Уже сама мысль о том, что не только в воображении литераторов, но и на самом деле, в металле и камне, существуют на далеких планетах огромные города с высотными домами и шумными заводами, что живут в этих городах настоящие, из плоти и крови разумные существа со своими радостями и проблемами, со своими гениями и неудачниками, сама мысль об этом, подобно диссонирующему аккорду, вызывает внутренний протест, требует доказательств, доказательств и только доказательств.

От сомнений, по-видимому, не застрахованы даже оптимисты. Не случайно же анкета, розданная участникам симпозиума (он проходил в Армении, во всемирно известной Бюраканской обсерватории), прежде всего интересовалась: «Допускаете ли Вы, что наша цивилизация единственная: а) в наблюдаемой области Вселенной, б) в нашей Галактике?» И хотя в большинстве анкет не только в пункте а), но и в пункте б) было достаточно твердо заявлено: «Не единственная…», это не может быть принято как достоверное доказательство. Вопросы не из тех, которые решаются голосованием.

И все-таки…

В нашей Галактике около 1011 (сто миллиардов) звезд. В наблюдаемой области Вселенной около 1010 (десять миллиардов) галактик. Всего в видимой нами Вселенной должно быть приблизительно 1021, т. е. 1 000 000 000 000 000 000 000 звезд.

Огромность этого числа представить себе довольно трудно.

Чтобы собрать столько — 1021 — песчинок, нужен сосуд в 1000 км3, а это по объему несколько Эльбрусов. Для размещения библиотеки, в книгах которой содержится 1021 букв (не страниц, не строчек, а именно букв!), понадобится книжный стеллаж из 10 млн. полок, каждая длиной от Земли до Луны. Чтобы просто пересчитать такое количество — 1021 — предметов, затрачивая на каждый лишь 1 с и работая без отдыха круглые сутки, человеку понадобилось бы чуть ли не миллион миллиардов лет.

Вот что такое число 1021, показывающее, сколько во Вселенной звезд, ближайших родственников нашего Солнца. Оно, если вдуматься, должно производить ошеломляющее впечатление даже на самых осторожных скептиков. Пусть одна внеземная цивилизация приходится на миллион звезд. Пусть одна на миллиард. Пусть, наконец, одна на тысячу миллиардов… Даже в этом последнем случае во Вселенной должен быть миллиард внеземных цивилизаций.

Число звезд во Вселенной — 1021 — очень большое число. А в мире больших чисел надежно работает теория вероятностей. (Подброшенная 10 раз монета может случайно все 10 раз упасть на «орла», но уже после нескольких тысяч подбрасываний число «орлов» и «решек» практически окажется одинаковым.) А это значит, что, если появление внеземных цивилизаций — сокращенно ВЦ — процесс достаточно вероятный, то интуитивное «не единственная…» превращается в достоверную, научно обоснованную истину.

Какова же его вероятность, этого самого процесса? Насколько типичен путь, который в известном участке Вселенной прошел разреженный межзвездный газ, превратившись в итоге в планету с 500 тыс. видов растений, 2 млн. видов насекомых, с 100 тыс. видов позвоночных животных и с этой удивительной «большой системой» — человеческим обществом?

Работа симпозиума «Связь с внеземными цивилизациями» в основном проходила в форме тематических дискуссий. Все его участники сидели за большим П-образным столом и после выступления основных докладчиков («инициаторы дискуссии») свободно обсуждали ту или иную проблему. И именно оценке вероятности возникновения ВЦ было, по сути дела, посвящено пять из семи таких дискуссий. Вот их темы:

«Проблема планетной астрономии. Космогония. Перспективы обнаружения других планетных систем».

«Планетная биология. Происхождение жизни. Возможность существования жизни на других планетах».

«Эволюция разума и технического общества на Земле».

«Закономерности развития космических цивилизаций».

«Возможность существования цивилизаций на известных астрофизических объектах. Астроинженерия. Возможность использования неизвестных законов природы».

Самым вероятным объектом для возникновения жизни считаются планеты, т. е. сравнительно небольшие небесные тела, вращающиеся вокруг источника энергии — звезды. Правда, на симпозиуме были названы и другие удобные для развития жизни объекты, в их числе старые, остывшие звезды, кометы и даже межзвездная среда. И все же наибольшее внимание уделялось планетам. Это вполне объяснимо: о том, что планета — удачное место для возникновения жизни, говорит не только теоретический анализ, но и достоверный, пусть пока и единственный «экспериментальный» факт.

По мнению некоторых теоретиков, образование планет путем конденсации диффузной разреженной материи — процесс типичный. О высокой вероятности существования планетных систем говорит, в частности, анализ собственного вращения звезд разного возраста. Резкое уменьшение момента вращения многих звезд на определенной стадии можно объяснить только тем, что у них появились планетные системы. Кстати, на долю нашей звезды — Солнца — сейчас приходится лишь 2 % вращательного момента Солнечной системы.

К сожалению, прямое наблюдение планет, даже у ближайших звезд, встречает непреодолимые пока технические трудности. Это связано, в частности, с очень малой яркостью планет, из-за чего они просто теряются на фоне пылающих звезд. Пока экспериментально удалось обнаружить признаки планет лишь у двух-трех далеких звезд. Причем все это пока косвенные данные, достоверно никто не может назвать звезду, кроме нашего Солнца, у которой есть планеты.

И все же можно считать, что с вероятностью существования планетных систем дело обстоит более менее благополучно. Вероятность эта оценивается довольно высоко, серьезных возражений против такой оценки нет.

Достаточно высоко оценивается также вероятность существования на планетах благоприятных для возникновения жизни физических условий. Во всяком случае, один из обсуждавшихся аспектов проблемы, вопрос о «строительном материале», о богатстве химического состава не дает оснований для пессимистических оценок. Результаты многочисленных спектрометрических наблюдений говорят о том, что практически во всех уголках Вселенной ассортимент химических элементов достаточно богат и наше земное изобилие — около 100 устойчивых элементов — не является исключением.

Значительно хуже дело с оценкой вероятности зарождения жизни на планетах, даже при благоприятных с нашей, земной точки зрения физических условиях. Диапазон оценок здесь огромен, и пока нет достаточных оснований отбрасывать ни те оценки, в которых вероятность зарождения жизни близка к 100 %, ни даже те, в которых эта вероятность близка к нулю. Пока мы еще очень мало знаем о том, как возникла жизнь у нас на Земле, и совсем ничего не знаем о некоторых этапах ее зарождения.

Во многих лабораториях мира давно проведены эксперименты, в которых основные биохимические «блоки» — аминокислоты, нуклеотиды — были получены искусственным путем при определенных физических условиях в атмосфере определенного состава. Такие условия и такой состав атмосферы вполне вероятны, если не сказать типичны, для планет, а значит, вероятность того, что природа должна сделать первый шаг от неживого к живому, достаточно велика.

А что дальше? Каким путем простейшие биохимические «блоки» могут объединяться в сложные молекулы — белки и нуклеиновые кислоты, с которых, собственно говоря, и начинается все живое? Насколько вероятно такое объединение?

На этом участке сложной комплексной проблемы CETI как раз возникает самая, пожалуй, неприятная для нее гипотеза. Согласно этой гипотезе первые жизнеподобные системы возникли на Земле случайно. Просто перетряхивались, перетасовывались молекулы под действием внешних энергетических факторов, и в какой-то момент они совершенно случайно оказались собранными в сложную биологическую структуру. Дальше все уже пошло быстро и целенаправленно: биологические структуры начали размножаться, объединяться во все более сложные системы, совершенствоваться путем естественного отбора. Но самый первый шаг на пути «от бульона до естественного отбора» — появление самой первой, способной к размножению структуры — это дело случая.

Что же неприятного в этой гипотезе? А то, что вероятность случайного зарождения жизни ничтожно мала. Примерно с такой же вероятностью бессистемно перемещаемые, перетряхиваемые на огромном конвейере миллиарды разнообразных радиодеталей могут на каком-то участке случайно собраться в схему сложного цветного телевизора. Если исходить из этой вероятности, то придется признать, что жизнь на нашей планете просто уникальное явление и практически нет никаких шансов встретить подобное явление еще где-нибудь во Вселенной.

Гипотеза случайного зарождения жизни встретила на симпозиуме серьезную критику, и в частности со стороны известного английского биохимика, лауреата Нобелевской премии, профессора Ф. Крика (Кембриджский университет). Подводя итоги второй тематической дискуссии, ученый отметил, что сейчас нет достоверных данных для определения вероятности возникновения жизни, но отсюда совсем не следует, что нужно заранее считать эту вероятность низкой и прибегать к таким понятиям, как «случай» и «чудо».

Действительно, может быть, по крайней мере при определенных физических условиях, появляются какие-то силы, которые способствуют образованию больших и сложных молекулярных структур типа белков. Подобно тому, скажем, как существуют силы, образующие из хаоса «перепутанных» атомов упорядоченные кристаллические решетки и архитектурные шедевры органических соединений. Эти силы можно сравнить с различными направляющими приспособлениями на конвейере, где происходит автоматическая сборка сложной электронной аппаратуры.

Пока экспериментально такие «приспособления» для сборки живых молекул в природе не обнаружены. Не представляют их себе пока и теоретики. А тем временем у пессимистов, сторонников случайного возникновения жизни, а значит, очень малой вероятности этого события появились новые аргументы — американские космические лаборатории «Викинг» не обнаружили никаких признаков жизни на Марсе, природные условия которого вполне пригодны для некоторых наших микроорганизмов. Вопрос о механизмах зарождения жизни пока остается открытым, а с ним остается без ответа вопрос о том, насколько вероятно встретить во Вселенной наших братьев по разуму.

Третья тематическая встреча Бюраканского симпозиума, по сути дела, должна была обсудить вероятность прохождения пути от простейших живых организмов до технически развитой цивилизации. А это обсуждение в свою очередь привело к острым дискуссиям о самой сущности цивилизаций, о закономерности их возникновения и развития. И так же как на предыдущей тематической встрече, здесь были свои сторонники высокой и малой вероятности. Высказывалось, в частности, мнение, что разумное животное может появиться при редком сочетании большого числа различных внешних и внутренних факторов, что пока нет обоснованных данных, позволяющих определить время, необходимое для преодоления пути от животного к мыслящему существу.

И все же большинство участников дискуссии привели серьезные аргументы в пользу высокой вероятности появления разума, интеллекта, цивилизованного общества, считая эти процессы естественным продолжением биологической эволюции.

Путям развития цивилизации за той отметкой, которой достигли мы, земляне, была посвящена четвертая тематическая дискуссия. Примечательно, что выступавшие на этой дискуссии, так же, впрочем, как и на предыдущей, часто отходили от проблемы CETI и говорили не столько о далеких обитаемых мирах, сколько о наших земных проблемах.

Другой сложный вопрос, затронутый на дискуссиях, — время жизни цивилизаций, т. е. время от ее зарождения до гибели. Сама постановка этого вопроса при первом с ней столкновении наверняка кажется непривычной и неприятной. Мы, земляне, приучены к мысли, что цивилизация должна жить неопределенно долго.

Но вот в одном из выступлений приводится список факторов, каждый из которых, если не принимать мер, может представить для земной цивилизации смертельную угрозу уже в ближайшие 50 лет. Это термоядерная война, загрязнение среды, экономический хаос, нехватка ресурсов для растущего населения, истощение природных источников сырья.

Упоминается и опасность другого рода — уменьшение интереса к технике, пренебрежение к прогрессу, исчезновение творческого начала, уход к «полинезийскому образу жизни» — к слиянию с природой вместо стремления к власти над ней. Такой, подход к «смыслу жизни» имел и имеет своих поклонников (буддисты, некоторые современные течения в США) и с первого взгляда может даже казаться привлекательным. Но когда думаешь, о перспективах такой «слитой с природой» цивилизации, беззащитной в столкновениях с коварными стихиями, со страшными климатическими и биологическими неожиданностями, то на ум невольно приходит известная «тематическая дискуссия» Муравья со Стрекозой.

Вопрос о долголетии цивилизации не только затрагивает глубокие философские и социологические проблемы нашего земного масштаба, но и имеет прямое отношение к проблеме CETI. Чем дольше живут цивилизации, тем больше шансов за то, что они «пересекутся» во времени и смогут установить между собой связь.

В вопросе об определении продолжительности жизни цивилизаций явно преобладал оптимистический подход. Широко пользовались участники симпозиума уже классической теперь классификацией Н. С. Кардашева, разделившего все вероятные ВЦ на три типа в зависимости от их энергетического богатства. Первый — это цивилизации, аналогичные нашей, земной. Второй тип — цивилизации, освоившие всю энергию своего Солнца, своей звезды, которая может отдать мощность около 1025 Вт. (Это примерно в 1014 раз больше, чем мощность всех земных электростанций.) И наконец, цивилизации третьего типа — это те, что освоили энергию своей галактики — примерно 1038 Вт. Естественно, что для перехода во второй и особенно в третий тип цивилизаций нужна астроинженерная деятельность огромных масштабов и, естественно, завидное долголетие.

Если на первых четырех дискуссиях звучали голоса не только оптимистов, но и скептиков, то пятая тематическая дискуссия по самой своей тематике была оптимистической. На ней, по сути дела, рассматривались дополнительные возможности «повышения процента» при оценке вероятности существования внеземных цивилизаций. Речь шла о том, что где-то могут действовать неизвестные нам законы природы и что они могут играть важную роль в образовании и развитии живых структур, в жизнедеятельности цивилизаций.

Выступая на этой дискуссии, лауреат Ленинской премии академик В. Л. Гинзбург (Физический институт им. П. Н. Лебедева АН СССР) заметил, что на первый взгляд существование иной физики на далеких планетах кажется вполне возможным — мы ведь «там» не были и не имеем никаких прямых данных о «тамошних» условиях. Однако подобное предположение противоречит основному принципу естествознания: законы физики, химии, биологии устанавливаются для ограниченного числа объектов, а затем переносятся на все такие же объекты, находящиеся в аналогичных условиях. Так, например, мы приняли — и пока не раскаиваемся в этом, — что все электроны одинаковы, что закон тяготения действует на Марсе так же, как и на Земле, что вода, добытая из арктического льда, будет разделяться на кислород и водород, так же как и вода из озера Чад.

— Это напоминание, — говорит далее В. Л. Гинзбург, — должно предостеречь от безосновательного фантазирования, но из него совсем не следует, что «там» все должно быть в точности, как и «здесь». Дело в том, что законы природы, в частности физические законы, установлены нами с ограниченной точностью и для некоторых ограниченных условий. А изменение таких ограничений может привести к серьезным качественным сдвигам. Может быть, «там» играют важную роль какие-либо очень маловероятные процессы и именно это меняет физическую картину. Может быть, «там» существуют не изученные нами пока состояния вещества, например со сверхвысокой плотностью, близкой к плотности атомных ядер. Наконец, даже на основе наших земных законов физики эволюция могла создать «там» неизвестные нам сложные структуры и основанные на них формы жизни. Можно, например, представить себе тончайшие нитевидные или слоистые соединения, в которых наблюдается сверхпроводимость при «комнатной» (разумеется, по «тамошней» мерке) температуре. Такие соединения могли бы, в частности, послужить основой для сверхбыстродействующей и сверхэкономичной нервной системы.

Здесь, по-видимому, уместно заметить, что на дискуссиях симпозиума довольно часто, особенно в выступлениях иностранных гостей, звучало слово «шовинизм». Но разумеется, использовалось оно совсем не в житейском, не в земном смысле, который подразумевает отвратительный для каждого честного человека «агрессивный буржуазный национализм, противопоставление интересов одной нации интересам всех других наций, разжигание чувства презрения к людям других рас и наций, вражды и ненависти между народами».

Слово «шовинизм» применялось, причем не без иронических оттенков, чтобы осудить представление о жизни далеких внеземных цивилизаций как об обязательной копии нашей земной жизни. В связи с этим говорилось о шовинизме звезд класса Солнца («Почему жизнь должна существовать лишь вокруг звезд того же класса, что и Солнце? Она может возникнуть и на планетах более молодых или более старых звезд, и даже на планетах без звезд…»), об углеродном шовинизме («Почему сложные матричные молекулы — эта основа жизни — должны строиться только на основе углеродных соединений? Вполне вероятны и другие «главные элементы» живого, например кремний или германий…»), об интеллектуальном шовинизме («Почему нужно считать, что все законы природы уже открыты нами, что мы уже узнали об устройстве мира если и не все, то, во всяком случае, главное?..»), о молекулярном шовинизме («Почему вообще жизнь должна организовываться на молекулярном уровне? Уже сейчас, например, известно около 200 элементарных атомных частиц, и возможно, что на их основе могут образовываться сложные и устойчивые «белки» и «нуклеиновые кислоты»…).

Все эти «шовинизмы» можно в принципе довольно легко понять и осудить. Значительно трудней обстоит дело с другим нашим человеческим предубеждением, которое можно было бы назвать «пространственно-временным шовинизмом». Мы привыкли к тому, что время всегда течет равномерно, что пространство «неделимо», что реально существует лишь один — наш собственный — пространственно-временной мир и только ему принадлежит каждая точка окружающей нас реальности. Однако теоретики сейчас всерьез покушаются на эти наши бесспорные, казалось бы, представления. Одна из теоретических моделей гравитационного коллапса — сжатия звезды до бесконечной плотности — предполагает существование особых точек пространства, так называемых «черных дыр», в которых уживается множество пространственных миров, разделенных бесконечными интервалами времени.

Рассказывая о них, доктор физико-математических наук Н. С. Кардашев (Институт космических исследований АН СССР) предложил участникам симпозиума не слишком простую для человеческого воображения задачу: он попытался нарисовать картину путешествия космонавтов в область «черной дыры». Оказывается, что при определенных условиях космонавты могут долететь до центра массы звезды и «вынырнуть» в другом пространственно-временном мире. Оставаясь неподвижными для внешнего наблюдателя, они смогут путешествовать в будущее, переходя из одного пространственно-временного мира в другой. Не исключено, что в одном из таких миров космонавты встретят цивилизации, которые принципиально не могут быть замечены земными наблюдателями.

Эта вполне «сумасшедшая идея» пока не более чем мысленный эксперимент на достаточно смелой теоретической модели, а проще говоря, чистейшая фантазия Однако за последние десятилетия людям уже не раз приходилось мириться с реальностью «сумасшедших идей» и «чистейших фантазий», таких, скажем, как идеи теории относительности или квантовой механики.

Итак, пять тематических дискуссий Бюраканского симпозиума «Связь с внеземными цивилизациями», проанализировав все составляющие вероятности существования ВЦ, показали, что в принципе вероятность эта может быть достаточно высокой, хотя сегодня еще нет оснований для достоверной ее оценки.

Уже много веков люди задумываются о множественности обитаемых миров. Мечтают, философствуют, фантазируют. Но только сейчас появляются реальные возможности обнаружить и, может быть, даже расшифровать сигналы внеземных цивилизаций, услышать из района какой-нибудь далекой звезды позывные загадочной и прекрасной Аэлиты. Если, конечно, она существует в достижимом для нас участке бескрайней Вселенной.

Версия "Гигантская снежинка"

Грозное явление, которое вошло в историю под названием "Тунгусский метеорит" по сей день остается объектом исследований и острых научных дискуссий.

Криминалист распутывает старое, сложное дело. Очень старое — прошли десятилетия, многое забыто, упущено, свидетелей не найдешь. И очень сложное — сохранилось лишь несколько косвенных улик, несколько второстепенных фактов, главное же приходится восстанавливать, воссоздавать. А воссоздавать по имеющимся данным можно много всякого разного. Вот одна версия, вот вторая, третья…

Но ведь истина может быть только одна… Какая же версия справедлива? Как все было на самом деле?

С этой детективной ситуацией можно, по-видимому, сравнить многолетние попытки восстановить истинную картину так называемого «падения Тунгусского метеорита», события, которое произошло в 1908 г.

Само название «Тунгусский метеорит» — это лишь первая версия, первое предположение о случившемся. В разное время разные авторы добавляли к ней и другие, в той или иной мере правдоподобные версии, в частности, такие (хронология не соблюдается):

Версия вторая — в земную атмосферу из антимиров влетел кусок антивещества; встреча вещества атмосферы с антивеществом, согласно законам физики, привела к их аннигиляции, к взаимоуничтожению, с выделением огромной энергии; произошел сильнейший аннигиляционный взрыв.

Версия третья — из другого цивилизованного мира на Землю прибыл космический корабль и, пытаясь совершить посадку, потерпел аварию, взорвался, скорее всего, из-за неисправностей в ядерных двигателях.

Версия четвертая — в Землю попала микроскопическая, размером с булавочную головку, «черная дыра», она создала сильнейшие возмущения в атмосфере («черная дыра» должна со страшной силой втягивать в себя вещество, напоминая сверхмощный пылесос), легко пронзила земной шар и, где-то в Южной Атлантике выскочив из Земли, понеслась дальше в свободный космос.

Версия пятая — наша планета столкнулась с небольшой сравнительно кометой, ядро которой как раз и создало все эффекты падения метеорита, а огромный разреженный хвост долго втягивался в атмосферу и создавал в ней свечение, в течение нескольких месяцев наблюдавшееся тогда над Европой и Западной Сибирью. Эту гипотезу выдвинул и разрабатывал академик В. Г. Фесенков, а затем ее тщательно исследовали его ученики.

В самое последнее время предположение о столкновении с кометой получило совершенно новое развитие и появилась еще одна, на сей раз уже детально проработанная версия.

Версия шестая — в земную атмосферу из космоса влетела гигантская снежинка (рис. 1), кометоподобное тело с очень рыхлым ядром из кристалликов льда.

Прежде чем излагать некоторые детали этой версии, несколько слов об исследованиях, позволивших довольно точно определить важные характеристики Тунгусского взрыва. Экспедиции к месту падения твердо установили следующие факты: в месте падения нет кратера; в месте падения практически не обнаружено остатков тела, влетевшего в атмосферу (это сразу же опровергло версию о врезавшемся в землю метеорите); взрыв повалил деревья на огромной площади, размером примерно 50x70 км; район, где повалены деревья, имеет характерную форму «бабочки» (рис. 2 и 4); направления падения деревьев позволяют определить центр взрыва.

Исходя из этих фактов, были выполнены теоретические и экспериментальные работы с целью ответить на вопросы: в какой точке должен был произойти взрыв, чтобы получился наблюдаемый вывал леса? Какой была сила взрыва? С какой скоростью и в каком направлении двигалось взорвавшееся тело?

В числе работ, давших ответ на эти вопросы, нужно назвать расчеты и эксперименты, выполненные в Институте физики Земли АН СССР группой исследователей во главе с кандидатом физико-математических наук М. А. Цикулиным. Развивая теоретические исследования сверхзвукового движения тел и возникающей, при этом ударной волны, оказалось возможным провести аналогию между этим процессом и взрывом, определить ряд вероятных характеристик Тунгусского явления. Расчеты были проверены в модельных экспериментах, на макете с проволочками, имитирующими деревья (рис. 3).

К ним с разной скоростью и под разными углами приближали небольшой пороховой заряд, взрывали его на разной высоте и получали разные картины вывала «леса» (рис. 4), в том числе и «бабочку».

На основании этих расчетов и экспериментов были сделаны выводы — все разрушения в районе, где произошло Тунгусское событие, вызваны только ударными волнами: прямой, направленной на землю, и отраженной от земли. Расчетную взрывную волну в принципе могли бы создать самые разные источники, их взрывной эквивалент — тротиловый заряд в 20–40 мегатонн, двигавшийся по сильно наклоненной траектории со скоростью 30–50 км/с и взорвавшийся на высоте 5—15 км. К аналогичным выводам пришла группа сотрудников Математического института и Вычислительного центра АН СССР во главе с доктором физико-математических наук В. П. Коробейниковым, просчитав на машине большое число самых разных вариантов взрыва.

Версия «гигантской снежинки» состоит в том, что необходимая ударная волна может появиться и без взрыва, в общепринятом смысле этого слова. На одной из сессий Отделения общей физики и астрономии Академии наук автор гипотезы академик Г. И. Петров рассказал о теоретических исследованиях, из которых получилась примерно такая картина. «Снежинка» массой порядка 100 тыс. т, диаметром до 300 м и плотностью вещества около 0,01 г/см3 (это в 5—10 раз меньше плотности нашего земного снега) влетает в атмосферу Земли под углом 20° к горизонту и с начальной скоростью примерно 40 км/с (более чем в 100 раз выше скорости звука). Впереди этой падающей «снежинки» бежит ударная волна, фронт которой быстро расширяется (см. рис. 1) из-за так называемого нестационарного испарения снежных кристалликов, нагревающихся при движении в атмосфере. «Снежинка» превращается в огромное облако, которое, расширяясь, все дальше отталкивает от себя ударную волну, само при этом все сильнее тормозится в атмосфере из-за растущего аэродинамического сопротивления. В итоге оторвавшаяся от облака ударная волна обрушивается на землю, производит страшные разрушения, а само облако как ни в чем не бывало исчезает с места преступления, растворяется в атмосфере. Академик Г. И. Петров совместно с доктором физико-математических наук В. П. Стуловым выполнили теоретический анализ и провели в Институте механики МГУ ряд экспериментов, показав, что такой процесс вполне возможен.

Исследуя тонкие механизмы сверхзвукового движения «ваты в вате», ученые надеются подтвердить свой предварительный вывод: «гигантская снежинка» — единственная правдоподобная версия Тунгусского события. Задача эта не из легких. Хотя бы потому, что ударная волна, как любят говорить специалисты по взрывам, очень быстро забывает, кто ее породил, т. е. чрезвычайно похожие ударные волны могут появиться и при химическом взрыве, и при ядерном, и при сверхзвуковом вхождении в атмосферу тела малой плотности.

По своей сложности, по малому количеству «улик» и обилию правдоподобных гипотез, Тунгусское событие в корне отличается от классических падений метеорных тел. Как правило, осколки или следы «пришельцев из космоса» — метеоритов — рассказывают о том, что они собой представляли, как двигались в атмосфере. Так, шестидесятитонный осколок железного метеорита, найденный в Африке, тридцатитонный осколок, найденный в Гренландии, сто тонн осколков Сихотэ-Алиньского метеорита, найденные у нас на Дальнем Востоке, обнаруженные на американском континенте два огромных кратера, образованных упавшими метеоритами (один диаметром 3,6 км, другой диаметром 1,2 км и глубиной около 200 м), дают представление о том, какие огромные тела прибыли к нам в свое время из далекого космоса. К сожалению, нет аналогичных вещественных доказательств, которые позволили бы представить себе то, что называют Тунгусским событием.

Тунгусское событие — старое, забытое, казалось бы, дело… Однако же исследователи регулярно возвращаются к этой грозной загадке, надеясь, по-видимому, найти ответы и на какие-то общие, может быть, даже практически важные вопросы.

И еще, наверное, из-за инстинктивной человеческой неприязни к неизвестному.

За горизонт Вселенной

Разрабатывается проект гигантского радиотелескопа, который будет построен в космическом пространстве и резко расширит возможности наблюдения звездного неба.

Ну чем еще нас можно удивить, людей XX в., свидетелей феерических побед науки, техники, индустрии…Мы все уже привыкли к этому непрерывному потоку сенсаций и даже, кажется, немного устали от него. Нас уже, видимо, ничто не может серьезно взволновать, никакие проекты и свершения. Никакие.

Никакие?

Вы листаете тонкую тетрадь — ксерокопию машинописного текста с несложными рисунками, официально именуемую «Препринт Пр 373 Института космических исследований АН СССР», вы листаете эту тетрадь, и у вас просто дух захватывает от очередной человеческой дерзости. От фантастичности замысла. И еще больше от того, что замысел этот уже спокойно рассматривают как будущую реальность. Превращают в технический проект. Готовят чертежи и строят модели. Планируют, когда что можно сделать. Подсчитывают, что сколько стоит, сколько нужно затратить средств. И что это в итоге даст. Ну а это самое «что даст» совсем уже поражает воображение — неужели такое возможно?

Но вот здесь — стоп! Здесь настал момент сменить манеру изложения: никаких эмоций, дабы не потерялось в них непростое для понимания существо дела. Сейчас мы попробуем рассказать обо всем последовательно и сухо, равняясь на бесстрастный стиль научных сообщений.

Идея создания КРТ

Радиоисточники во Вселенной. Чтобы раз и навсегда исключить неаккуратное толкование таких слов, как «радиоисточник», «радиотелескоп», «радиоастрономия», проделайте сами с собой несложный педагогический эксперимент. Как-нибудь, слушая музыку, на мгновение отвлекитесь и отметьте про себя такой прозаический факт: вы слышите рукотворный звук, воспринимаете звуковые волны, искусственно созданные человеком. И тут же вспомните, что природа и сама умеет генерировать звук, что у нее своя музыка — раскаты грома, шум лесов, ровные ритмы морского прибоя, завывание вьюги. А теперь от звуковых волн переходите к радиоволнам. Последние известия в ваш дом приносит радиоволна, искусственно созданная на радиостанции (рис. 1).

И в то же время радиоволны рождаются естественным образом, в огромном многообразии природных явлений, таких, скажем, как разряд молнии, или изменение энергии молекул, или торможение электронов в магнитных полях. Подобные процессы происходят во всех небесных телах, и поэтому радиоизлучения приходят к нам от планет, от Луны и Солнца, от звезд, галактик, туманностей. Именно они и называются космическими радиоисточниками.

Радиоастрономия. Изучением космических радиоисточников занимается радиоастрономия. Она зародилась в 1931 г., когда случайно было обнаружено радиоизлучение Млечного Пути. Через 15 лет в созвездии Лебедя нашли первый точечный радиоисточник, невидимую радиозвездочку, и лишь через восемь лет ее удалось увидеть в мощном телескопе. Это, кстати, типичная ситуация — сначала далекий космический объект обнаруживают по радиоизлучению, а затем его уже удается увидеть. А бывает, что и не удается.

Радиотелескопы (РТ). Основной инструмент радиоастрономов — радиотелескоп, он состоит из чувствительного приемника и остронаправленной антенны. Антенна называется «остронаправленной» потому, что улавливает радиоволны только с одного направления, а остальные просто не замечает. Именно поэтому, поворачивая антенну радиотелескопа и как бы ощупывая ею небосвод, удается установить, где именно находится радиоисточник, а иногда и оценить его размеры, различить детали.

Одна из главных характеристик радиотелескопа — его разрешающая способность, т. е., грубо говоря, умение различить близко расположенные источники, не принять их за один источник (рис. 2). Разрешающую способность оценивают в угловых единицах, в градусах, минутах или секундах. Если, например, разрешающая способность телескопа 5' (5 угловых минут), то он видит звездное небо как бы через узкую конусообразную трубку, постепенно расширяющуюся под углом 5' и прикрытую плотным матовым стеклом, — никаких деталей в поле зрения трубки уже различить нельзя. И ясно, что чем тоньше трубка, чем острее угол, под которым она расходится, тем более мелкие детали можно через нее увидеть. Так, скажем, при разрешении 1' с расстояния 1 км можно увидеть световое пятно размером с футбольный мяч, а при разрешении 1" (угловая секунда) обнаружить в нем более яркие или менее яркие участки размером с горошину.

Радиотелескопы, которые мы чаще всего видим на фотографиях, устроены так: большая металлическая чаша-рефлектор собирает радиоволны и концентрирует их в фокусе обычно на высоте в несколько метров (40 % от диаметра) над центром зеркала. Здесь расположен сам воспринимающий элемент, так называемый облучатель, связанный непосредственно со входом приемника (рис. 3).

Разрешающая способность такого радиотелескопа зависит от размеров рефлектора: чем он больше, тем лучше разрешение, тем меньше, острее угол зрения и, значит, более мелкие детали можно рассмотреть (рис. 4). Кроме того, чем больше рефлектор, тем больше энергии он собирает, тем лучше вторая важнейшая характеристика радиотелескопа — его чувствительность, способность улавливать слабые сигналы.

Отсюда вывод: нужно строить радиотелескопы с большими антеннами. Чем больше, тем лучше.

Размеры антенны РТ. Каждая наша земная радиостанция излучает радиосигналы одной частоты, т. е. с одной строго определенной длиной волны. А космический радиоисточник излучает, как правило, очень широкий спектр частот, излучает одновременно на всех волнах всех диапазонов. Образно говоря, берет аккорд, ударяя сразу по всем рояльным клавишам. Радиотелескоп не может услышать весь этот аккорд, он выделяет из него лишь отдельные ноты: есть радиотелескопы средневолновые, они улавливают космические радиоизлучения с длиной волны в сотни метров, есть инструменты метрового диапазона и дециметрового. Ну а телескоп с чашей-рефлектором, как правило, рассчитан на прием сантиметровых или миллиметровых волн.

Желательно вести наблюдение на волнах как можно более коротких, и вот одна из причин — при одних и тех же размерах антенны ее разрешающая способность тем лучше, чем короче принимаемая волна (рис. 5).

Но при этом, чем короче принимаемая волна, тем точнее должен быть изготовлен сам рефлектор, тем меньше он должен деформироваться при поворотах (рис. 9). Так, например, при длине волны 1 см деформации рефлектора даже на 1 мм могут заметно ухудшить характеристики антенны. Вот здесь-то и лежит непримиримое противоречие: чтобы улучшить разрешающую способность радиотелескопа, нужно увеличить антенну и принимать более короткие волны; уменьшая длину принимаемой волны, нужно повышать точность геометрических форм антенны, а точность эта снижается с увеличением размеров антенны.

Вот лучшее, что удалось сегодня достигнуть в создании радиоастрономических инструментов с поворачивающимися рефлекторами: радиотелескоп в Эффельсберге (ФРГ) — диаметр рефлектора D = 100 м, минимальная длина волны к — около 0,8 см.

Кроме того, построены большие телескопы сантиметрового диапазона с неподвижными рефлекторами — в них направление приема можно несколько менять, перемещая облучатель, ну а кроме того, телескоп осматривает небо, вращаясь с Землей. Один из таких инструментов сооружен в кратере потухшего вулкана в Аресибо (Пуэрто-Рико), его данные: D = 300 м, λ = 6 см. Другой гигант с мировым именем — это наш РАТАН-600 (с. 92). Его рефлектором служат сегменты кольца диаметром D = 600 м, образованного металлическими щитами высотой 7,5 м; рабочий диапазон телескопа — λ от 8 мм до 30 см. У лучших из этих инструментов разрешающая способность несколько секунд. Как будто бы неплохо (с расстояния 1 км видна горошина), но даже при таком рекордном разрешении уже на краю нашей Галактики, на расстоянии 50—100 тыс. св. лет, не говоря уже о больших космических расстояниях — миллионах и миллиардах световых лет, радиотелескоп увидел бы нашу Солнечную систему со всеми ее планетами как одно радиопятнышко.

Радиоинтерферометры (РИ). Если собрать два-три радиотелескопа в единую систему, то можно получить значительно лучшую разрешающую способность, чем у отдельного инструмента. Такая система называется интерферометром (с. 96), в ней, по сути дела, с высочайшей точностью учитывают момент прихода радиоволн к каждой антенне и по запаздыванию одного из сигналов вычисляют радиоизображение источника, его размеры. Чем больше база РИ, т. е. чем дальше один РТ от другого, тем легче уловить разность хода, тем выше, лучше разрешение интерферометра. На Земле предельное расстояние между антеннами — 12 тыс. км (диаметр земного шара), на радиоинтерферометрах с такой базой, принимая радиоволны длиной около 1 см, уже удалось получить разрешающую способность 2·10-4 угловой секунды, т. е. 0,2 миллисекунды. Замечательный результат: была бы у нас такая острота зрения, мы увидели бы на Луне предмет размером с ботинок, а на Марсе могли бы рассмотреть детали рельефа размером в несколько километров.

Космический радиотелескоп (КРТ). Главный враг больших телескопов — сила земного тяготения — резко ослабевает по мере удаления от Земли. И поэтому в космосе можно строить большие антенны, в частности, большие рефлекторы, которые не будут деформироваться под действием собственного веса. Можно строить антенны, не расходуя тонны металла, как мы это делаем на Земле, антенны с очень точной геометрией, а значит, пригодные для приема на самых коротких волнах, вплоть до миллиметровых. Один из вариантов большого космического радиотелескопа разрабатывают советские специалисты. Великолепная идея КРТ объединила конструкторов, радистов, специалистов по строительным конструкциям, по космической технике. Рассчитано: диаметр рефлектора можно довести до 10 км, а возможно, и до 20 км; «фигуру» рефлектора можно будет сохранить с такой точностью, которая позволит принимать радиоволны до λ = 1 мм.

Космический радиоинтерферометр (КРИ). Имея два КРТ, можно построить радиоинтерферометр с огромной базой. Можно, например, увезти эти КРТ в две противоположные точки далекой околосолнечной орбиты, куда-нибудь за Марс, и пусть они себе вращаются вокруг Солнца на расстоянии 1–1,5 млрд. км друг от друга (рис. 6). Из двух таких плывущих в космосе антенн может получиться КРИ с гигантской базой и с совершенно уже невероятным разрешением — до 10-10 угловой секунды (10-7 миллисекунды), т. е. в миллион раз — в миллион раз! — лучше нынешних рекордных результатов. Имея оптический прибор с таким разрешением, мы могли бы с Земли рассматривать отдельные песчинки в марсианской пустыне.

Возможная реализация идеи

Модульная конструкция. Важную особенность КРТ отражают два слова, введенных в его название, — «неограниченно наращиваемый». Рефлектор КРТ должен собираться из отдельных модулей, они выводятся на орбиту в сложенном виде, автоматически раскрываются и стыкуются друг с другом (рис. 7).

При этом модулями можно наращивать уже работающую антенну. Основа модуля — каркас из металлических труб диаметром 75 мм при толщине стенок 0,5 мм. На каркасе крепится ажурная рабочая поверхность, изготовленная из более тонких трубок диаметром меньше 1 см. И наконец, на рабочей поверхности закреплен третий слой пирога — отражающая поверхность, скорее всего из тонкого металлизированного пластика (рис. 8).

Толщина всей конструкции, точнее, ее глубина — 10 м, хотя для рефлектора диаметром D = 20 км ее, видимо, придется делать более толстой, наращивая в глубину трубчатый силовой каркас. Основной модуль сборного рефлектора представляет собой равносторонний шестиугольник со стороной 200 м, рабочая поверхность — это сетка из треугольников со стороной 2 м, отражающие элементы — шестиугольники с диагональю 4 м. Расчеты показывают, что антенна такой конструкции при диаметре рефлектора D = 1 км будет иметь массу 250 т (это 12 таких космических аппаратов, как «Салют»), при D = 10 км — 25 000 т. Эти цифры не будут казаться чрезмерно большими, если подсчитать, что на 1 кв. м поверхности КРТ приходится масса всего около 200–300 г.

Естественно, что при сборке модульного рефлектора возможны некоторые неточности. Кроме того, на антенну будут действовать небольшие гравитационные силы, световое давление, солнечный ветер, неравномерный нагрев. После сборки антенна с километровым рефлектором сможет работать на волнах не короче 50 см, а с десятикилометровым — не короче 2 м. Для работы на более коротких волнах в конструкции рефлектора нужно предусмотреть элементы, корректирующие взаимное положение модулей, скорее всего в пределах нескольких миллиметров. Коррекция нужна будет и сразу после сборки рефлектора, и в процессе его эксплуатации. Представить себе корректирующие элементы несложно — это могут быть, например, расположенные в местах сочленения модулей червячные механизмы с реверсивными электродвигателями. Команды на эти двигатели будут поступать с космического аппарата, управляющего всей работой КРТ. На управляющем аппарате будет система, которая лазерным лучом быстро осмотрит рефлектор и тут же выдаст команды на элементы, корректирующие положение модулей.

Наведение КРТ на радиоисточники. Форма рефлектора КРТ выбирается с таким расчетом, чтобы он мог без перемещения осмотреть звездное небо в пределах телесного угла 20°. В этих пределах можно двигать «луч зрения», перемещая облучатель, вместе с приемником размещенный на космическом аппарате (рис. 7, 10).

Несколько таких аппаратов-приемников позволят на одном КРТ сразу принимать сигналы нескольких космических радиоисточников. Принятые приемниками сигналы после некоторой предварительной обработки передаются на Землю по каналам радиосвязи — сейчас это может быть сделано сравнительно просто, радисты уже умеют поддерживать связь с космическими аппаратами, находящимися далеко за Юпитером.

Можно направить КРТ на любую точку небесной сферы, поворачивая рефлектор с помощью закрепленных на нем маломощных реактивных двигателей (рис. 11). В системе наведения и стабилизации могут работать реактивные ионные двигатели — в них тяга создается веществом (рабочим телом), которое выбрасывается за счет электрической энергии; а ее можно получить от атомных источников или от солнечных батарей. Для стабилизации КРТ с километровым рефлектором нужен суточный расход вещества 6,4 кг и мощность электропитания 200 кВт; для десятикилометрового КРТ эти значения в 1000 раз больше. На разворот километровой антенны за сутки на 180° уйдет 5 кг вещества; такой же разворот десятикилометровой антенны займет 5 суток и потребует 1,5 т рабочего тела.

Создание КРТ. Антенны больших радиотелескопов будут собираться на околоземных орбитах и в собранном виде перевозиться к месту работы, на далекие межпланетные орбиты. Перевозить КРТ нужно очень осторожно, разгоняя их медленно, с малым ускорением. Такая перевозка займет месяцы и потребует сравнительно небольшого расхода топлива — 2–7 % от массы КРТ. Чтобы уменьшить расход топлива и упростить разгон готового КРТ, можно собирать его на сравнительно высокой околоземной орбите, где силы земного тяготения невелики. Для антенны диаметром d = 1 км целесообразна' монтажная орбита не ниже 1000 км, для антенны диаметром d = 10 км — не ниже 30–50 тыс. км. Предполагается такая последовательность сборки: сначала блоки КРТ вывозят на низкую околоземную орбиту; затем их собирают в поезда и перевозят на монтажную орбиту; туда же на борт орбитальной станции прибывают монтажники. При стартах транспортных кораблей с интервалом в 2–3 дня на постройку среднего КРТ уйдут месяцы, а большого — годы. Это сравнимо со сроками создания больших зданий, морских судов, электростанций.

Стоимость КРТ. Если принять за основу стоимость такой большой космической программы, как «Аполлон», на которую было затрачено около 25 млрд. долларов, то окажется, что КРТ с диаметрами антенны 1 и 10 км обойдется соответственно в 3 и 25–40 % этой суммы, т. е. 750 млн. долларов (d = 1 км) и 6–9 млрд. долларов (d = 10 км). Это, конечно, очень приближенные оценки. Попутно отметим — постройка КРТ с пятикилометровым рефлектором обойдется примерно вдвое дешевле, чем наземная система с аналогичными параметрами. И вот еще что: сравнивая большие космические проекты, нужно учитывать не только расход, но и доход — учитывать, что именно тот или иной проект даст науке. Здесь, видимо, КРТ вне конкуренции.

Возможности КРТ

Ожидаемые параметры. Помимо уже названной уникальной разрешающей способности — вплоть до 10-10 угловой секунды, КРТ будет иметь еще ряд параметров, недостижимых на Земле. Так, например, удалившись от нашей планеты, он будет слушать космические радиоисточники абсолютно на всех частотах, в то время как наземным инструментам доступно лишь 8 % радиодиапазона: некоторые частоты не пробиваются к Земле через ионосферу, другие же заняты наземными передатчиками радиовещания, телевидения, связи, локации, на фоне которых слабый радиоисточник просто теряется. Ну и, наконец, о чувствительности больших КРТ. Она, видимо, будет доведена до 10-36 Вт/ (м2·Гц). Это число даже сравнить трудно с чем-нибудь привычным, такая чувствительность в миллионы раз выше, чем у лучших современных радиотелескопов. А что такое чувствительность современного радиотелескопа, можно пояснить простой аналогией: если бы такой чувствительностью обладал слух, то мы, находясь в Москве, слышали бы тиканье часов на руке у человека, прогуливающегося по улицам Рио-де-Жанейро.

Голографирование Вселенной. Голография в отличие от фотографии регистрирует не только интенсивность излучения различных точек объекта (светлые волосы, черные брови или рубашку в мелкий горошек). Голография регистрирует не только интенсивность, но и фазу световой волны, т. е., проще говоря, регистрирует, откуда волна пришла раньше, а откуда позже. И именно по этой информации, по этим «раньше — позже», потом из голограммы можно воссоздать трехмерное, объемное изображение.

Фазу волны регистрирует и радиоинтерферометр — это его основная профессия. И с помощью радиоинтерферометра — трех разнесенных радиотелескопов — можно получить голограмму звездного неба, воссоздать объемное изображение галактик и звезд, точно определить расстояние до них (рис. 12).

Правда, для земного интерферометра с его предельной базой 12 000 км глубина голографирования получается небольшой — 6 св. лет. В сферу с таким радиусом входит всего 4 ближайшие звезды. А вот КРИ покажет нам объемную Вселенную совсем других размеров: при базе 1,5 млрд. км и принимаемой волне с λ = 1 м глубина голографирования получится 1,5 млрд. св. лет, а при λ = 1 мм она достигнет 15 000 млрд. св. лет. Вряд ли кто-нибудь возьмет на себя смелость предсказать, что мы увидим на такой голограмме, — сегодня граница видимой Вселенной проходит в 1000 раз ближе, она находится на расстоянии 10–15 млрд. св. лет. И конечно, в эту оценку сама Вселенная внесет коррективы, связанные с ее расширением, с искривлением пространства-времени.

Поиск звезд и планет. До сих пор не обнаружены радиоизлучения ни одной звезды типа нашего Солнца. Ну а что касается планет, которые, может быть, вращаются вокруг других звезд, то планеты эти в принципе нельзя обнаружить прямыми наблюдениями — они слишком малы. Косвенные методы выявили только три подозрительных случая, только три звезды (из 1011 звезд нашей Галактики и 1021 звезд Вселенной), у которых как будто бы есть признаки планетной системы. Большой КРИ сможет обнаружить большие планеты, такие, как Юпитер, соответственно на расстояниях до 150 св. лет (λ = 1 см) и до 1500 св. лет (λ = 1 мм), а такие планеты, как Земля, на расстояниях до 20 св. лет (λ = 1 см) и до 200 св. лет (λ = 1 мм); уже в сфере радиусом 200 св. лет находится примерно 10 000 звезд, у которых в принципе могут быть планетные системы. Обнаружение далеких планет имеет прямое отношение к такой интригующей проблеме, как поиск внеземных цивилизаций.

Поиск внеземных цивилизаций. Каждого, кто по утрам включает радио и надеется услышать, что уже установлен наконец радиоконтакт с инопланетянами, бесспорно, удивит следующий результат довольно простых и надежных расчетов: если предположить, что радиопередатчики инопланетян имеют мощность 1 МВт — такую мощность излучают наши радиостанции, то окажется, что нынешние радиотелескопы вообще не могут принять сигналы из других населенных миров. Уже одно это показывает, насколько скромные возможности стоят пока за нашими красивыми мечтами о приеме разумных сигналов из космоса. Если даже предположить, что инопланетяне знают о нас и, используя направленные антенны, нацелили свои передатчики прямо на Землю, сконцентрировали радиоволны, подобно лучу прожектора, то число реально проверяемых звезд не превысит нескольких тысяч.

А вот КРТ благодаря его сверхвысокой чувствительности позволит проверить звезды в «шаре» радиусом до 100 тыс. св. лет, т. е. практически все звезды нашей Галактики. И если в районе хоть одной из 100 000 000 000 этих звезд есть цивилизация, похожая на нашу, она скорее всего будет обнаружена (слово «есть» нужно воспринимать с учетом космических расстояний — радиоволны идут «оттуда» многие тысячи лет, рассказывая о древнейшей истории источника излучений). Подсчитаны возможности КРТ и в части обнаружения цивилизаций, далеко обогнавших нашу земную. Если предположить, что такие цивилизации создают вокруг своей звезды гигантские инженерные сооружения, так называемую сферу Дайсона, то КРТ смогут обнаружить их не только в нашей, но и в соседних галактиках, на расстояниях до 1,5 млн. св. лет. Эта цифра относится к астроинженерным сооружениям, имеющим температуру, близкую к земной. А инженерные сооружения, принявшие температуру космоса (около —270 °C), можно будет обнаружить на расстояниях до 10–15 млрд. св. лет, т. е. в любом месте видимой сегодня Вселенной (рис. 13). Таким образом, в проблеме поиска внеземных цивилизаций КРТ и КРИ помогут наконец сделать решительный шаг от слов к делу.

Резюме (как принято, печатается на двух языках, различающихся в данном случае лишь мерой конкретности).

Вполне типичная фантастика —

«За Марс заброшенной антенной…»

Воображения гимнастика —

«… пройти за горизонт Вселенной!»

Но по плечу такое дело Безумству смелых.

Обсуждаются проекты больших космических радиотелескопов (КРТ) и образованных из них радиоинтерферометров (КРИ). Параметры КРТ и КРИ могут быть в миллионы раз лучше, чем у лучших современных инструментов. Это откроет принципиально новые возможности исследования Вселенной. С позиций сегодняшнего дня проекты КРТ и КРИ могут показаться сложными, но, видимо, не менее сложной казалась отправка человека в космос за несколько лет до полета Ю. А. Гагарина.

Дополнение. Когда эта книга готовилась к печати, пришло сообщение: на советскую орбитальную станцию «Салют-6» был доставлен космический радиотелескоп КРТ-10 с десятиметровой антенной. С помощью КРТ-10 на околоземной орбите впервые в мире был проведен цикл радиоастрономических наблюдений. Таким образом, уже сделан первый реальный шаг на пути к большим космическим радиотелескопам.

* * *

* * *